zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics. (English) Zbl 0933.58010
Let $(M,\langle \cdot ,\cdot \rangle)$ be a closed oriented Riemannian manifold and $\cal D_\mu ^s(M)$ the group of volume preserving diffeomorphisms of $M$. The weak $L^2$ right invariant Riemannian metric on $\cal D_\mu ^s(M)$ is given by $$ \langle X,Y\rangle _{L^{2}}=\int_{M}\langle X(x),Y(x)\rangle \mu (x),$$ where $X,Y\in T_e\cal D_\mu ^s(M)$ are vector fields on $M$ and $\mu $ is the volume element on $M$. V. I. Arnold, D. Ebin and J. Marsden showed that geodesics $\eta _t$ of the weak $L^2$ right invariant Riemannian metric on $\cal D_\mu ^s(M)$ are motions of incompressible ideal fluids. {\it D. D. Holm, J. E. Marsden} and {\it T. S. Ratiu} [Adv. Math. 137, 1-81 (1998)] derived a new model for the mean motion of an ideal fluid in Euclidean space given by the equation $$\dot{V}(t)+\nabla _{U(t)}V(t)-\alpha ^{2}[ \nabla U(t)] ^{t}\cdot \Delta U(t)=-\text{grad } p(t)$$ where $V=(1-\alpha ^{2}\Delta)U$, $\text{div} U=0$. In this paper, the equation of mean motion of an ideal fluid is generalized to the case of a manifold $M$. This model corresponds to the weak $H^1$ right invariant Riemannian metric on $\cal D_\mu ^s(M)$ which is expressed as $$ \langle X,Y\rangle _{1}=\langle X,(1+\text{Ric})Y\rangle _{L^{2}}+\langle \nabla X,\nabla Y\rangle _{L^{2}}$$ for $X,Y\in T_e\cal D_\mu ^s(M)$. The following problems are investigated: $H^1$-covariant derivative and its geodesic flow on $\cal D_\mu ^s(M)$, curvature of the $H^1$-metric, existence and uniqueness results for the Jacobi equation, stability and curvature.

58D05Groups of diffeomorphisms and homeomorphisms as manifolds
76M30Variational methods (fluid mechanics)
58B20Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
Full Text: DOI arXiv
[1] Arnold, V. I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann. inst. Grenoble 16, 319-361 (1966)
[2] Arnold, V. I.; Khesin, B.: Topological methods in hydrodynamics. (1998) · Zbl 0902.76001
[3] Arnold, V. I.; Khesin, B.: Topological methods in hydrodynamics. (1992) · Zbl 0743.76019
[4] Bao, D.; Lafontaine, J.; Ratiu, T.: On a nonlinear equation related to the geometry of the diffeomorphism group. Pacific J. Math. 158, 223-242 (1993) · Zbl 0739.58066
[5] Ebin, D.: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. of math. 105, 141-200 (1977) · Zbl 0373.76007
[6] Ebin, D.; Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of math. 92, 102-163 (1970) · Zbl 0211.57401
[7] D. Ebin, G. Misiolek, The exponential map on Ds{$\mu$}
[8] C. Foias, D. D. Holm, E. S. Titi, The three dimensional viscous Cammassa--Holm Equations and their relation to the Navier--Stokes equations and turbulence theory · Zbl 0995.35051
[9] Holm, D. D.; Kouranbaeva, S.; Marsden, J. E.; Ratiu, T. S.; Shkoller, S.: A nonlinear analysis of the averaged Euler equations. Fields inst. Comm. 2 (1998)
[10] Holm, D. D.; Marsden, J. E.; Ratiu, T. S.: Euler--Poincaré equations and semidirect products with applications to continuum theories. Adv. in math. 137, 1-81 (1998) · Zbl 0951.37020
[11] Holm, D. D.; Marsden, J. E.; Ratiu, T. S.: Euler--Poincaré models of ideal fluids with nonlinear dispersian. Phys. rev. Lett. 80, 4273-4277 (1998)
[12] Lang, S.: Differentiable and Riemannian manifolds. (1995) · Zbl 0824.58003
[13] Lukatskii, A. M.: On the curvature of the group of measure-preserving diffeomorphisms of ann. Comm. Moscow math. Soc., 179-180 (1980)
[14] Lukatskii, A. M.: Curvature of the group of measure-preserving diffeomorphisms of ann. Sibirskii math. J. 25, 76-88 (1984)
[15] Lukatskii, A. M.: Structure of the curvature tensor of the group of measure-preserving diffeomorphisms of a compact two-dimensional manifold. Sibirskii math. J. 29, 95-99 (1988)
[16] Marsen, J. E.; Ebin, D. G.; Fischer, A. E.: Diffeomorphism groups, hydrodynamics and relativity. (1972) · Zbl 0284.58002
[17] Marsden, J. E.; Ratiu, T. S.: Introduction to mechanics and symmetry. (1995)
[18] Misiolek, G.: Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms. Indiana univ. Math. J. 2, 215-235 (1993)
[19] Misiolek, G.: Conjugate points in $D{\mu}$(T2. Proc. amer. Math. soc. 124, 977-982 (1996)
[20] Misiolek, G.: A shallow water equation as a geodesic flow on the Bott--viasoro group. J. geom. Phys. 24, 203-208 (1998)
[21] Misiolek, G.: The exponential map on the free loop space is Fredholm. Geom. funct. Anal. 7, 954-969 (1997) · Zbl 0906.58002
[22] Morrey, C. B.: Multiple integrals in the calculus of variations. (1966) · Zbl 0142.38701
[23] Rosenberg, S.: The Laplacian on a Riemannian manifold. London math. Soc. (1997) · Zbl 0868.58074
[24] Shnirelman, A. I.: The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Mat. sb. (N.S.) 128, 82-109 (1985)
[25] Shnirelman, A. I.: Generalized fluid flows, their approximation and applications. Geom. funct. Anal. 4, 586-620 (1994) · Zbl 0851.76003
[26] Treves, F.: Introduction to pseudodifferential and Fourier integral operators. (1982)