zbMATH — the first resource for mathematics

An anisotropic model of damage and frictional sliding for brittle materials. (English) Zbl 0933.74055
Summary: We develop a model of anisotropic damage by mesocrack growth, accounting for unilateral behaviour relative to crack closure. Frictional sliding of closed microcrack systems is introduced here as an additional dissipative mechanism, which is considered to be coupled with the primary dissipative mechanism (damage by microcrack growth). Indeed, accounting for frictional sliding completes the description of moduli recovery in the existing model by adding to the normal moduli recovery effect (normal with respect to the crack plane) the substantial recovery of shear moduli. In parallel to damage modelling, the internal variable related to frictional sliding is a second-order tensor. Even if the unilateral effect and friction incipience are characterized by a discontinuity of effective moduli, it is crucial to ensure the continuity of energy and stress-response. Relevant conditions are proposed to ensure this. As far as frictional sliding is concerned, and unlike most of the models based on the classical Coulomb law, the corresponding criterion is given here in the space of thermodynamic forces representing a form of energy release with respect to the sliding internal variable. It appears that the normality rule in the latter space for sliding evolution is not physically contradictory with the observed phenomenon. The pertinence of the proposed theory, relative to the maximum dissipation hypothesis for both mechanisms, is illustrated by simulating loading paths involving damage and friction effects.

74R05 Brittle damage
74M10 Friction in solid mechanics
74E10 Anisotropy in solid mechanics
Full Text: DOI
[1] Andrieux, S., Un modèle de matériau microfissuré avec frottement, C. R. acad. sci. Paris, t. 293, 329-332, (1981), Série II · Zbl 0466.73131
[2] Andrieux, S.; Bamberger, Y.; Marigo, J.J., Un modèle de matériau microfissuré pour LES bétons et LES roches, J. Mécanique théorique et appliquée, 5, n^o 3, 471-513, (1986) · Zbl 0595.73111
[3] Cormery, F., Contribution à la modélisation de l’endommagement par mésofissuration et du phénomène de localisation associé, ()
[4] Curnier, A., A theory of friction, Int. J. solids structures, 20, n^o 7, 637-647, (1984) · Zbl 0543.73138
[5] Curnier, A.; He, Q.; Zysset, P., Conewise linear elastic materials, J. elasticity, 37, 1-38, (1995) · Zbl 0828.73016
[6] Dragon, A.; Cormery, F.; Désoyer, T.; Halm, D., Localized failure analysis using damage models, (), 127-140
[7] Dragon, A.; Halm, D., Modélisation de l’endommagement par mésofissuration : comportement unilatéral et anisotropie induite, C. R. acad. sci. Paris, t. 322, 275-282, (1996), Série IIb · Zbl 0920.73321
[8] Fond, C.; Berthaud, Y., Extensions of the pseudo tractions technique for friction in cracks, circular cavities and external boundaries; effect of the interactions on the homogenized stiffness, Int. J. fracture, 74, 1-28, (1995)
[9] Gambarotta, L.; Lagomarsino, S., A microcrack damage model for brittle materials, Int. J. solids structures, 30, n^o 2, 177-198, (1993) · Zbl 0775.73196
[10] Govindjee, S.; Kay, G.; Simo, J., Anisotropic modelling and numerical simulation of brittle damage in concrete, Int. J. num. meth. engng, 38, 3611-3633, (1995) · Zbl 0836.73055
[11] Halm, D.; Dragon, A., A model of anisotropic damage by mesocrack growth; unilateral effect, Int. J. damage mechanics, 5, 384-402, (1996)
[12] Horii, H.; Nemat-Nasser, S., Overall moduli of solids with microcracks: load-induced anisotropy, J. mech. phys. solids., 31, n^o 2, 151-171, (1983) · Zbl 0506.73097
[13] Horii, H.; Nemat-Nasser, S., Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. geophys. res., 90, B4, 3105-3125, (1985)
[14] Ju, J., On two-dimensional self-consistent micromechanical damage models for brittle solids, Int. J. solids structures, 27, n^o 2, 227-258, (1991)
[15] Kachanov, M., A microcrack model of rock inelasticity — part I: frictional sliding on microcracks, Mech. mat., 1, 19-27, (1982)
[16] Kachanov, M., Effective elastic properties of cracked solids: critical review of some basic concepts, ASME appl. mech. rev., 45, n^o 8, 304-335, (1992)
[17] Kachanov, M., Elastic solids with many cracks and related problems, (), 259-445 · Zbl 0803.73057
[18] Krajcinovic, D.; Basista, M.; Sumarac, D., Basic principles, (), 1-51
[19] Michalowski, R.; Mroz, Z., Associated and non-associated sliding rules in contact friction problems, Arch. mech., 30, n^o 3, 259-276, (1978) · Zbl 0397.73088
[20] Ortiz, M.; Popov, E.P., Accuracy and stability of integration algorithms for elastoplastic constitutive relations, Int. J. num. meth. engng., 21, 1561-1576, (1985) · Zbl 0585.73057
[21] Pecqueur, G., Étude expérimentale et modélisation du comportement d’une craie et d’un grès en torsion, ()
[22] Pham, D.V., Suivi numérique des bandes de localisation dans LES structures endommageables (endommagement par mésofissuration, anisotropie induite) — applications en géomécanique, ()
[23] Simo, J.; Ju, J., Strain- and stress-based continuum damage models — I. formulation, Int. J. solids structures, 23, 821-840, (1987) · Zbl 0634.73106
[24] Wesolowski, Z., Elastic material with different elastic constants in two regions of variability of deformation, Arch. mech., 21, n^o 4, 449-468, (1969) · Zbl 0194.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.