×

zbMATH — the first resource for mathematics

The Nosé-Poincaré method for constant temperature molecular dynamics. (English) Zbl 0933.81058
From the text: The authors present a new extended phase space method for constant temperature (canonical ensemble) molecular dynamics. Their starting point is the Hamiltonian introduced by S. Nosé to generate trajectories corresponding to configurations in the canonical ensemble. Using a Poincaré time-transformation, they construct a Hamiltonian system with the correct intrinsic time scale and show that it generates trajectories in the canonical ensemble. This approach corrects a serious deficiency of the standard change of variables (Nosé-Hoover dynamics), which yields a time-reversible system but simultaneously destroys the Hamiltonian structure. A symplectic discretization method is presented for solving the Nosé-Poincaré equations. The method is explicit and preserves the time-reversal symmetry. In numerical experiments, it is shown that the new method exhibits enhanced stability when the temperature fluctuation is large. In the appendix extensions are presented for Nosé chains, holonomic constraints, and rigid bodies.

MSC:
81V55 Molecular physics
81S10 Geometry and quantization, symplectic methods
81-08 Computational methods for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frenkel, D; Smit, B, Understanding molecular simulation, (1996) · Zbl 0889.65132
[2] Allen, M.P; Tildesley, D.J, Computer simluation of liquids, (1987) · Zbl 0703.68099
[3] Anderson, H.C, Molecular-dynamics simulations at constant pressure and – or temperature, J. chem. phys., 72, 2384, (1980)
[4] Berendsen, H.J.C; Postma, J.P.M; van Gunsteren, W.F; DiNola, A; Haak, J.R, Molecular dynamics with coupling to an external Bath, J. chem. phys., 81, 3684, (1984)
[5] Evans, D.J, Computer “experiment” for nonlinear thermodynamics of coutte flow, J. chem. phys., 78, 3297, (1983)
[6] Haile, J.M; Gupta, S, Extensions of the molecular dynamics simulation method. II. isothermal systems, J. chem. phys., 79, 3067, (1983)
[7] Hoover, W.G; Ladd, A.J.C; Moran, B, High-strain-rate plastic flow studied via nonequilibrium molecular dynamics, Phys. rev. lett., 48, 1818, (1982)
[8] Nosé, S, A molecular-dynamics method for simluations in the canonical ensemble, Mol. phys., 52, 255, (1984)
[9] Nosé, S, A unified formulation of the constant temperature molecular-dynamics methods, J. chem. phys., 81, 511, (1984)
[10] Hoover, W.G, Canonical dynamics: equilibrium phase-space distributions, Phys. rev. A, 31, 1695, (1985)
[11] Olver, P.J, Applications of Lie groups to differential equations, (1993) · Zbl 0785.58003
[12] Leimkuhler, B.J; Reich, S; Skeel, R.D, Integration methods for molecular dynamics, IMA volumes in mathematics and its applications, 82, 161, (1996) · Zbl 0860.92003
[13] Sanz-Serna, J.M; Calvo, M.P, Numerical Hamiltonian problems, (1995)
[14] Arnold, V.I, Mathematical methods of classical mechanics, (1978) · Zbl 0386.70001
[15] Winkler, R.G; Kraus, V; Reineker, P, Time reversible and phase-space conserving molecular dynamics at constant temperature, J. chem. phys., 102, 9018, (1995)
[16] Hairer, E, Backward analysis of numerical integrators and symplectic methods, Ann. numer. math., 1, 107, (1994) · Zbl 0828.65097
[17] Benettin, G; Giorgilli, A, On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms, J. statist. phys., 74, 1117, (1994) · Zbl 0842.58020
[18] Quispel, G.R.W; Roberts, J.A.G, Chaos and time-reversal symmetry, Phys. rep., 216, 63, (1992)
[19] Mehlig, B; Heermann, D.W; Forest, B.M, Hybrid Monte Carlo method for condensed matter systems, Phys. rev. B, 45, 679, (1992)
[20] Zare, K; Szebehely, V, Time transformations for the extended phase space, Celestial mech., 11, 469, (1975) · Zbl 0313.70009
[21] Hairer, E, Variable time step integration with symplectic methods, Appl. numer. math., 25, 219, (1997) · Zbl 0884.65073
[22] S. Reich, Backward error analysis for numerical integrators · Zbl 0935.65142
[23] Holian, B.L; De Groot, A.J; Hoover, W.G; Hoover, C.G, Time-reversible equilibrium and nonequilibrium isothermal – isobaric simulations with centered-difference stoermer algorithms, Phys. rev. A, 41, 4552, (1990)
[24] Martyna, G.J; Tuckerman, M.E; Tobias, D.J; Klein, M.L, Explicit reversible integrators for extended systems dynamics, Mol. phys., 87, 1117, (1996)
[25] Jang, S; Voth, G.A, Simple reversible molecular dynamics algorithms for nosé-Hoover chain dynamics, J. chem. phys., 107, 9514, (1997)
[26] Stoffer, D, Variable steps for reversible methods, Computing, 55, 1, (1995) · Zbl 0831.65085
[27] McQuarrie, D.A, Statistical mechanics, (1976)
[28] Ç ǎ, T; Ray, J.R, Isothermal molecular-dynamics ensembles, Phys. rev. A, 37, 4510, (1988)
[29] Nosé, S, Constant temperature molecular dynamics methods, Prog. theor. phys. supp., 103, 1, (1991)
[30] Geng Sun, Symplectic partitioned runge – kutta methods, J. comput. math., 11, 365, (1993) · Zbl 0789.65049
[31] Loncharich, R.J; Brooks, B.R, The effects of truncating long-range forces on protein dynamics, Proteins, 6, 32, (1989)
[32] Hansen, J.P; McDonald, I.R, Theory of simple liquids, (1986)
[33] Martyna, G.J; Klein, M.L; Tuckerman, M, Nosé-hoover chains: the canonical ensemble via continuous dynamics, J. chem. phys., 97, 2635, (1992)
[34] Toxvaerd, S; Olson, O.H, Molecular dynamics at constant temperature, Physica scripta T, T33, 98, (1990)
[35] Ryckaert, J.P; Ciccotti, G; Berendsen, H.J.C, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. comput. phys., 23, 327, (1977)
[36] Leimkuhler, B; Skeel, R, Symplectic numerical integrators in constrained Hamiltonian systems, J. comput. phys., 112, 117, (1994) · Zbl 0817.65057
[37] Jay, L.O, Symplectic partitioned runge – kutta methods for constrained Hamiltonian systems, SIAM J. numer. anal., 33, 368, (1996) · Zbl 0903.65066
[38] Bulgac, A; Adamuti-Trache, M, Molecular dynamics of rigid molecules, J. chem. phys., 105, 1131, (1996)
[39] Dullweber, A; Leimkuhler, B; McLachlan, R, A symplectic splitting method for rigid-body molecular dynamics, J. chem. phys., 107, 5840, (1997)
[40] McLachlan, R.I, Explicit lie – poisson integration and the Euler equations, Phys. rev. lett., 71, 3043, (1993) · Zbl 0972.65509
[41] Reich, S, Momentum conserving symplectic integrators, Physica D, 76, 375, (1994) · Zbl 0818.58020
[42] Kol, A; Laird, B.B; Leimkuhler, B.J, A symplectic method for rigid-body molecular simulation, J. chem. phys., 107, 2580, (1997)
[43] McLachlan, R.I; Scovel, C, Equivariant constrained symplectic integration, J. nonlinear sci., 5, 233, (1995) · Zbl 0836.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.