zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Constructive and algebraic methods of the theory of rough sets. (English) Zbl 0934.03071
Abstract approximation operators corresponding to a generalization of the classical rough set approach are discussed and compared with constructive methods to define set approximations in the rough set framework. The main results are related to axiomatization of approximation operators and conditions under which different rough algebras are defined. Some characterizations of approximation operators used by different authors are presented.

MSC:
03E72Fuzzy set theory
68T30Knowledge representation
WorldCat.org
Full Text: DOI
References:
[1] Cattaneo, G.: Generalized rough sets: preclusivity fuzzy-intuitionistic (BZ) lattices. Studia logica 58, 47-77 (1997) · Zbl 0864.03040
[2] Cattaneo, G.: Mathematical foundations of roughness and fuzziness. Manuscript, dipartimento di science dell’informazione, univerita di milano, via comelico 39, I-20135 (1997)
[3] Chellas, B.F.: Modal logic: an introduction. (1980) · Zbl 0431.03009
[4] Cohn, P.M.: Universal algebra. (1965) · Zbl 0141.01002
[5] Comer, S.: An algebraic approach to the approximation of information. Fundamenta informaticae 14, 492-502 (1991) · Zbl 0727.68114
[6] Comer, S.: On connections between information systems, rough sets, and algebraic logic. Algebraic methods in logic and computer science, Banach center publications 28, 117-124 (1993) · Zbl 0793.03074
[7] Du{}ntsch, I.: Rough sets and algebras of relations. Incomplete information: rough set analysis, 95-108 (1998)
[8] Gehrke, M.; Walker, E.: On the structure of rough sets. Bulletin of the Polish Academy of sciences, mathematics 40, 235-245 (1992) · Zbl 0778.04002
[9] Henkin, L.; Monk, J.D.; Tarski, A.: Cylindric algebras I. (1971) · Zbl 0214.01302
[10] Hughes, G.E.; Cresswell, M.J.: An introduction to modal logic. (1968) · Zbl 0205.00503
[11] Iwinski, T.B.: Algebraic approach to rough sets. Bulletin of the Polish Academy of sciences, mathematics 35, 673-683 (1987)
[12] Iwinski, T.B.: Rough orders and rough concepts. Bulletin of the Polish Academy of sciences, mathematics 36, 187-192 (1988)
[13] Klir, G.J.: Multivalued logics versus modal logics: alternative frameworks for uncertainty modelling. Advances in fuzzy theory and technology, 3-47 (1994)
[14] Klir, G.J.; Yuan, B.: Fuzzy sets and fuzzy logic, theory and applications. (1995) · Zbl 0915.03001
[15] Kortelainen, J.: On relationship between modified sets, topological spaces and rough sets. Fuzzy sets and systems 61, 91-95 (1994) · Zbl 0828.04002
[16] Lemmon, E.J.: An extension algebra and the modal system T. Notre dame journal of formal logic 1, 3-12 (1960) · Zbl 0114.24601
[17] Lemmon, E.J.: Algebraic semantics for modal logics II. Journal of symbolic logic 31, 191-218 (1966) · Zbl 0147.24805
[18] Lin, T.Y.; Liu, Q.: Rough approximate operators: axiomatic rough set theory. Rough sets, fuzzy sets and knowledge discovery, 256-260 (1994) · Zbl 0818.03028
[19] Marchal, B.: Modal logic -- a brief tutorial. Non-standard logics for automated reasoning, 15-23 (1988)
[20] McKinsey, J.C.C.: A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. The journal of symbolic logic 6, 117-134 (1941) · Zbl 67.0974.01
[21] McKinsey, J.C.C.; Tarski, A.: The algebra of topology. Annals of mathematics 45, 141-191 (1944) · Zbl 0060.06206
[22] Nakamura, A.; Gao, J.M.: A logic for fuzzy data analysis. Fuzzy sets and systems 39, 127-132 (1991) · Zbl 0729.03015
[23] Nakamura, A.; Gao, J.M.: On a KTB-modal fuzzy logic. Fuzzy sets and systems 45, 327-334 (1992) · Zbl 0754.03014
[24] Nguyen, H.T.: Intervals in Boolean rings: approximation and logic. Foundations of computer and decision sciences 17, 131-138 (1992) · Zbl 0781.06011
[25] Orlowska, E.: Logic of indiscernibility relations. Bulletin of Polish Academy of science, mathematics 33, 475-485 (1985)
[26] Orlowska, E.: Kripke semantics for knowledge representation logics. Studia logica 49, 255-272 (1990) · Zbl 0726.03023
[27] Orlowska, E.: Rough set semantics for non-classical logics. Rough sets, fuzzy sets and knowledge discovery, 143-148 (1994)
[28] Pagliani, P.: A pure logic-algebraic analysis of rough top and rough bottom equalities. Rough sets, fuzzy sets and knowledge discovery, 225-241 (1994) · Zbl 0819.04010
[29] Pagliani, P.: Rough sets theory and logic-algebraic structures. Incomplete information: rough set analysis, 109-190 (1998)
[30] Pawlak, Z.: Information systems, theoretical foundations. Information systems 6, 205-218 (1981) · Zbl 0462.68078
[31] Pawlak, Z.: Rough sets. International journal of computer and information sciences 11, 341-356 (1982) · Zbl 0501.68053
[32] Pawlak, Z.: Rough classification. International journal of man-machine studies 20, 469-483 (1984) · Zbl 0541.68077
[33] Pawlak, Z.; Wong, S.K.M.; Ziarko, W.: Rough sets: probabilistic versus deterministic approach. International journal of man-machine studies 29, 81-95 (1988) · Zbl 0663.68094
[34] Pomykala, J.A.: Approximation operations in approximation space. Bulletin of the Polish Academy of sciences, mathematics 35, 653-662 (1987)
[35] Pomykala, J.A.: On definability in the nondeterministic information system. Bulletin of the Polish Academy of sciences, mathematics 36, 193-210 (1988)
[36] Pomykala, J.; Pomykala, J.A.: The stone algebra of rough sets. Bulletin of the Polish Academy of sciences, mathematics 36, 495-508 (1988)
[37] Rasiowa, H.: An algebraic approach to non-classical logics. (1974) · Zbl 0299.02069
[38] Rasiowa, H.; Sikorski, R.: Mathematics of metamathematics. (1970) · Zbl 0122.24311
[39] Wasilewska, A.: Topological rough algebras. Rough sets and data mining: analysis for imprecise data, 411-425 (1997) · Zbl 0860.03042
[40] Wiweger, A.: On topological rough sets. Bulletin of the Polish Academy of sciences, mathematics 37, 89-93 (1989) · Zbl 0755.04010
[41] Wong, S.K.M.; Wang, L.S.; Yao, Y.Y.: On modeling uncertainty with interval structures. Computational intelligence 11, 406-426 (1995)
[42] Wybraniec-Skardowska, U.: On a generalization of approximation space. Bulletin of the Polish Academy of sciences, mathematics 37, 51-61 (1989) · Zbl 0755.04011
[43] Wybraniec-Skardowska, U.: Unit operations. Zeszytynaukowe wyzszej szkoly pedagogicznej im powstancow slaskich w opolu, matematyka 27, 113-129 (1992)
[44] Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International journal of approximate reasoning 15, 291-317 (1996) · Zbl 0935.03063
[45] Yao, Y.Y.: A comparative study of fuzzy sets and rough sets. (1997)
[46] Yao, Y.Y.; Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent automation and soft computing, an international journal 2, 103-120 (1996)
[47] Yao, Y.Y.; Wong, S.K.M.: A decision theoretic framework for approximating concepts. International journal of man-machine studies 37, 793-809 (1992)
[48] Zakowski, W.: On a concept of rough sets. Demonstratio Mathematica 15, 1129-1133 (1982) · Zbl 0526.04005
[49] Zakowski, W.: Approximations in the space (U,II). Demonstratio Mathematica 16, 761-769 (1983) · Zbl 0553.04002