A characterization and representation of the generalized inverse \(A_{T,S}^{(2)}\) and its applications. (English) Zbl 0934.15003

Summary: This paper presents an explicit expression for the generalized inverse \(A^{(2)}_{T,S}\). Based on this, we established the characterization, the representation theorem and the limiting process for \(A^{(2)}_{T,S}\). As an application, we estimate the error bound of the iterative method for approximating \(A^{(2)}_{T,S}\).


15A09 Theory of matrix inversion and generalized inverses
65F20 Numerical solutions to overdetermined systems, pseudoinverses
65F10 Iterative numerical methods for linear systems
Full Text: DOI


[1] Ben-Israel, A., On matrices of index zero or one, SIAM J. Appl. Math., 17, 1118-1125 (1968) · Zbl 0186.34002
[2] Ben-Israel, A.; Greville, T. N.E., Generalized Inverses: Theory and Applications (1974), Wiley: Wiley New York · Zbl 0305.15001
[3] Bott, R.; Duffin, R. J., On the algebra of networks, Trans. Amer. Math. Soc., 74, 99-109 (1953) · Zbl 0050.25104
[4] Campbell, S. L.; Meyer, C. D., Generalized Inverses of Linear Transformations (1979), Pitman: Pitman London · Zbl 0417.15002
[5] Carlson, D.; Haynsworth, E.; Markham, T. L., A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math., 26, 169-175 (1974) · Zbl 0245.15002
[6] Chen, Y., The generalized Bott-Duffin inverse and its applications, Linear Algebra Appl., 134, 71-91 (1990) · Zbl 0703.15006
[7] Cline, R. E.; Greville, T. N.E., A Drazin inverse for rectangular matrices, Linear Algebra Appl., 29, 53-62 (1980) · Zbl 0433.15002
[8] Eldén, L., A weighted pseudoinverse, generalized singular values and constrained least squares problems, BIT, 22, 487-502 (1982) · Zbl 0509.65019
[9] Fiedler, M.; Markham, T. L., A characterization of the Moore-Penrose inverse, Linear Algebra Appl., 179, 129-133 (1993) · Zbl 0764.15003
[10] Getson, A. J.; Hsuan, F. C., [2]-Inverses and their Statistical Applications, (Lecture Notes in Statistics 47 (1988), Springer: Springer Berlin) · Zbl 0671.62003
[11] Groetsch, C. W., Representations of the generalized inverse, J. Math. Anal. Appl., 49, 154-157 (1975) · Zbl 0295.47012
[12] Gulliksson, M., Iterative refinement for constrained and weighted linear least squares, BIT, 34, 239-253 (1994) · Zbl 0808.65040
[13] Hanke, M.; Neumann, M., Preconditionings and splittings for rectangular systems, Numer. Math., 57, 85-95 (1990) · Zbl 0704.65018
[14] Husen, F.; Langenberg, P.; Getson, A., The [2]-inverse with applications to satistics, Linear Algebra Appl., 70, 241-248 (1985) · Zbl 0584.62078
[15] Marsaglia, G.; Styan, G. P.H., Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 2, 269-292 (1974) · Zbl 0297.15003
[16] Mitra, S. K.; Hartwig, R. E., Partial orders based on outer inverse, Linear Algebra Appl., 176, 3-20 (1992) · Zbl 0778.15003
[17] Nashed, M. Z., Generalized Inverse and Applications (1976), Academic Press: Academic Press New York · Zbl 0327.45022
[18] Nashed, M. Z., Inner, outer, and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim., 9, 261-325 (1987) · Zbl 0633.47001
[19] Nashed, M. Z.; Chen, X., Convergence of Newton-like methods for singular operator equations using outer inverses, Numer. Math., 66, 235-257 (1993) · Zbl 0797.65047
[20] Rao, C. R.; Mitra, S. K., Generalized Inverse of Matrices and its Applications (1971), Wiley: Wiley New York · Zbl 0236.15004
[21] Wedin, P.-Å., Perturbation results and condition numbers for outer inverses and especially for projections, (Technical Report UMINF 124.85, S-901 87 (1985), Inst. of Info. Proc., University of Umeå: Inst. of Info. Proc., University of Umeå Umeå, Sweden)
[22] Wei, M.; Zhang, B., Structures and the uniqueness conditions of MK-weighted pseudoinverse, BIT, 34, 437-450 (1994) · Zbl 0811.15003
[23] Wang, G.; Wei, Y., Limiting expression for generalized inverse \(A^{(2)}_{T,S}\) and its corresponding projectors, Numer. Math. J. Chinese Univ., 4, 25-30 (1995) · Zbl 0847.65025
[24] Wei, Y., A characterization and representation of the Drazin inverse, SIAM J. Matrix Anal. Appl., 17, 744-747 (1996) · Zbl 0872.15006
[25] Wei, Y.; Wang, G., The perturbation theory for the Drazin inverse and its applications, Linear Algebra Appl., 258, 179-186 (1997) · Zbl 0882.15003
[26] Wei, Y., Perturbation and computation of the generalized inverse \(A^{(2)}_{T,S}\), (Master Thesis (1994), Shanghaa Normal University)
[27] Wei, Y., Solving singular linear systems and generalized inverse, (Ph.D. Thesis (1997), Fudan University)
[28] Wei, Y.; Wang, G., A survey on the generalized inverse \(A^{(2)}_{T,S}\), (Proceedings of Meeting on Matrix Analysis and Applications (1997)), 421-428, Spain
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.