×

On gradients of functions definable in o-minimal structures. (English) Zbl 0934.32009

The well known Lojasiewicz inequality \((\|\text{grad} f\|>f^\alpha\), \(\alpha<1\), in short \(L\)-inequality) concerns real analytic functions \(f\) in a neighborhood of a point \(a\in R^n\), \(f(a)=0\). A trajectory of the vector field \(-\text{grad} f\) is defined as a maximal differentiable curve \(\gamma\) verifying \(\gamma'(t)=-\text{grad} f(\gamma(s))\).
Lojasiewicz proved that all trajectories of \(-\text{grad} f\) are of finite length, when \(f\) is real analytic in a neighborhood of a compact \(U\).
The notion of “\(o\)-minimal structure on the real field” describes abstractly [see L. Van den Dries and C. Miller, Duke Math. J. 84, No. 2, 497-540 (1996; Zbl 0889.03025)] different kinds of geometric categories of sets which appear in semialgebraic and subanalytic geometries. For instance \((R\), exp)-definable sets define a “\(o\)-minimal structure” (theorem of Wilkie).
Actually the generalizations of the \(L\)-inequality for “\(o\)-minimal structures” is of great interest. In this paper a new \(o\)-minimal version of the \(L\)-inequality is obtained. A study of all trajectories of \(-\text{grad} f\) is given too, proving the theorem that the length of mentioned trajectories is bounded by a constant independent of the trajectory. Another interesting author’s result says that the flow of \(-\text{grad} g\) with a non negative definable \(g\), determines a deformation retract onto \(g^{-1}(0)\).
Reviewer: S.Dimiev (Sofia)

MSC:

32B20 Semi-analytic sets, subanalytic sets, and generalizations
32B05 Analytic algebras and generalizations, preparation theorems
14P15 Real-analytic and semi-analytic sets
26E05 Real-analytic functions
26E10 \(C^\infty\)-functions, quasi-analytic functions
03C99 Model theory

Citations:

Zbl 0889.03025

References:

[1] [BM] , Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. · Zbl 0674.32002
[2] J. BOCHNAK, M. COSTE, M.-F. ROY, Géométrie algébrique réelle, Springer, 1987.0633.1401690b:14030 · Zbl 0633.14016
[3] L. van den DRIES, Remarks on Tarski’s problem concerning (ℝ, +,.), Logic Colloquium 1982, (eds: G. Lolli, G. Longo, A. Marcja), North Holland, Amsterdam, 1984, 97-121.0585.0300686g:03052 · Zbl 0585.03006
[4] L. van den DRIES, A. MACINTYRE, D. MARKER, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205.0837.1200695k:12015 · Zbl 0837.12006
[5] L. van den DRIES, C. MILLER, Geometric categories and o-minimal structures, Duke Math. J., 84, No 2 (1996), 497-540.0889.0302597i:32008 · Zbl 0889.03025
[6] L. van den DRIES, P. SPEISSEGGER, The real field with generalized power series is model complete and o-minimal, Trans. AMS (to appear).0905.03022 · Zbl 0905.03022
[7] X. HU, Sur la structure des champs de gradients de fonctions analytiques réelles, Thèse Université Paris 7 (1992).
[8] K. KURDYKA, S. ŁOJASIEWICZ, M. ZURRO, Stratifications distinguées comme outil en géométrie semi-analytique, Manuscripta Math., 186 (1995), 81-102.0817.3200596a:32013 · Zbl 0817.32005
[9] K. KURDYKA, T. MOSTOWSKI, The Gradient Conjecture of R. Thom, preprint (1996).01590725 · Zbl 1053.37008
[10] K. KURDYKA, A. PARUSIŃSKI, wf-stratification of subanalytic functions and the Łojasiewicz inequality, C. R. Acad. Sci. Paris, 318, Série I (1994), 129-133.0799.3200795d:32012 · Zbl 0799.32007
[11] J-M. LION, J.-P. ROLIN, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier, Grenoble, 47-3 (1997), 852-884.0873.3200498h:32009AIF_1997__47_3_859_0 · Zbl 0873.32004
[12] J-M. LION, J.-P. ROLIN, Théorème de Gabrielov et fonctions log-exp-algébriques, preprint (1996).
[13] T. LOI, On the global Łojasiewicz inequalities for the class of analytic logarithmic-exponential functions, Ann. Inst. Fourier, Grenoble, 45-4 (1995), 951-971. · Zbl 0831.14024
[14] S. ŁOJASIEWICZ, Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, vol 117, ed. B. Malgrange (Paris 1962), Publications du CNRS, Paris, 1963.0234.5700728 #4066 · Zbl 0234.57007
[15] S. ŁOJASIEWICZ, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1965. · Zbl 0241.32005
[16] S. ŁOJASIEWICZ, Sur les trajectoires du gradient d’une fonction analytique réelle, Seminari di Geometria 1982-1983, Bologna, 1984, 115-117.0606.5804586m:58023 · Zbl 0606.58045
[17] S. ŁOJASIEWICZ, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier, Grenoble, 43-5 (1993), 1575-1595.0803.3200296c:32007AIF_1993__43_5_1575_0 · Zbl 0803.32002
[18] C. MILLER, Expansion of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94.0823.0301895i:03081 · Zbl 0823.03018
[19] M. SHIOTA, Geometry of subanalytic and semialgebraic sets: abstract, Real analytic and algebraic geometry, Trento 1992, eds. F. Broglia, M. Galbiati, A. Tognoli, W. de Gruyter, Berlin, 1995, 251-276.0870.3200196b:14069 · Zbl 0870.32001
[20] [S2] , Geometry of subanalytic and semialgebraic sets, Birkhauser, 1997. · Zbl 0889.32006
[21] [Si] , Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 527-571. · Zbl 0549.35071
[22] R. SJAMAAR, Convexity properties of the moment mapping re-examined, Adv. of Math., to appear.0915.58036 · Zbl 0915.58036
[23] A. WILKIE, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc., 9 (1996), 1051-1094.0892.0301398j:03052 · Zbl 0892.03013
[24] A. WILKIE, A general theorem of the complement and some new o-minimal structures, manuscript (1996).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.