zbMATH — the first resource for mathematics

Structure of positive radial solutions to the Haraux-Weissler equation. (English) Zbl 0934.34028
The authors consider the system \[ u_{rr}+{n-1\over r} u_r+{r \over 2}u_r+ \lambda u+|u|^{p-1}u=0,\;r>0,\;u(0)=\alpha>0, \tag{1} \] with \(n\geq 3\), \(p>1\), \(\lambda>0\). The main result is the following: Suppose \(n\geq 3\), \(1<p<(n+2)/(n-2)\). If \(0<\lambda\leq(n-2)/2\), then there exists a unique positive number \(\alpha_\lambda\) such that \(u(r;\alpha_\lambda)\) is a rapidly decaying solution. Morover, \(u(r,\alpha)\) is a crossing solution for every \(\alpha \in(\alpha_\lambda,\infty)\) and a slowly decaying solution for every \(\alpha\in (0,\alpha_\lambda)\).
Reviewer: S.Mazanik (Minsk)

34C11 Growth and boundedness of solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems, general theory
Full Text: DOI
[1] Atkinson, F.V.; Peletier, L.A., Sur LES solutions radiales de l’equation \(Δu + (x · ∇u)2 + λu2 + |u|\^{}\{p−1\}u = 0\), C. R. acad. sci. Paris, serie I, 302, 99-101, (1986)
[2] Escobedo, M.; Kavian, O., Variational problems related to self-similar solutions of the heat equation, Nonlinear analysis, 11, 1103-1133, (1987) · Zbl 0639.35038
[3] Haraux, A.; Weissler, F.B., Nonuniqueness for a semilinear initial value problem, Indiana univ. M. J., 31, 167-189, (1982) · Zbl 0465.35049
[4] Hirose, M., Structure of positive radial solutions to a semilinear elliptic PDE with a gradient-term, Funkc. ekvac., 39, 323-345, (1996) · Zbl 0863.34002
[5] Peletier, L.A.; Terman, D.; Weissler, F.B., On the equation \(Δu + (x · ∇u)2 + ƒ(u) = 0\), Arch. rat. mech. anal., 94, 83-99, (1986) · Zbl 0615.35034
[6] Weissler, F.B., Asymptotic analysis of an ODE and nonuniqueness for a semilinear PDE, Arch. rat. mech. anal., 91, 231-245, (1986) · Zbl 0614.35043
[7] Weissler, F.B., Rapidly decaying solutions of an ODE with application to semilinear elliptic on parabolic pdes, Arch. rat. mech. anal., 91, 247-266, (1986) · Zbl 0604.34034
[8] Yanagida, E., Uniqueness of rapidly decaying solutions to the haraux-weissler equation, J. diff. eqs., 127, 561-570, (1996) · Zbl 0856.34058
[9] Yanagida, E. and Yotsutani, S., A unified approach to the structure of radial solutions to semilinear elliptic problems. (In Preparation.) · Zbl 1001.35041
[10] Yotsutani, S., Pohozaev identity and its applications, Kyoto university Sûrikaisekikenkyûsho Kôkyûroku, 834, 80-90, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.