zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear functional differential equations of arbitrary orders. (English) Zbl 0934.34055
The initial value problem is considered for the fractional delay differential equation $$D^\alpha x(t)= f(t,x(t), D^{\alpha_1} x(t- r),\dots, D^{\alpha_n} x(t- nr)),\tag 1$$ $$D^jx(t)= 0,\quad\text{for }t\le 0,\quad j= 0,1,\dots, n,\tag 2$$ with $\alpha\in (n,n+1]$, $\alpha_k\in (k- 1,k]$, $k= 1,\dots, n$. A sufficient condition for the existence of at least one (nondecreasing) solution to (1), (2) is established.

34K05General theory of functional-differential equations
Full Text: DOI
[1] El-Sayed, A. M. A.; Ibrahim, A. G.: Multivalued fractional diffential equations. Apll. math. Comput. 68, 15-25 (1995) · Zbl 0830.34012
[2] El-Sayed, A. M. A.: Fractional order evolution equations. J. of factional calculus 7, 89-101 (1995) · Zbl 0839.34069
[3] El-Sayed, A. M. A.: Fractional differential difference equations. J. of fractional calculus 10 (1996) · Zbl 0888.34060
[4] El-Sayed, A. M. A.: Fractional order diffusion-wave equation. International J. Of theoretical physics 35, No. 2, 311-322 (1996) · Zbl 0846.35001
[5] Gelfand, I. M.; Shilov, G. E.: Generalized functions. 1 (1958)
[6] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional diffential equations. (1993) · Zbl 0789.26002
[7] El-Sayed, A. M. A.: Linear differential equations of fractional orders. Appl. math. Comput. 55, 1-12 (1993) · Zbl 0772.34013
[8] Emmanuele, G.: Measure of weak noncompactness and fixed point theorem. Bull. math. Soc. sci. Math. R.S. Roum. 25, 253-258 (1981) · Zbl 0482.47027
[9] De Blasi, F. S.: On a property of the unit sphere in a Banach space. Bull. math. Soc. sci. Math. R.S. Roum. (N.S.) 21, 259-262 (1977) · Zbl 0365.46015
[10] Appell, J.; De Pascale, E.: Su alcuni parametri connesi con la misura di noncompacttezza di hausdofff in spazzi functioni misurabili. Boll. un. Math. ital. 3B, No. 6, 497-515 (1984)
[11] Apostol, T. M.: Mathematical analysis. (1982)
[12] Kolmogorov, A. N.; Fomin, S. V.: Introductory real analysis. (1975) · Zbl 0213.07305
[13] Banas, J.: On the superposition operator and integrable solutions of some functional equations. Nonlinear analysis 12, 777-784 (1988) · Zbl 0656.47057
[14] Banas, J.; Goebel, K.: Measures of noncompactness in Banach spaces. Lect. notes in math. 60 (1980) · Zbl 0441.47056