Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. (English) Zbl 0934.35174

Summary: We study the effects of an applied magnetic field on a superconductor and estimate the value of the upper critical magnetic field \(H_{C_3}\) at which superconductivity can nucleate. In the case of a spatially homogeneous applied field, we show that \(H_{C_3}\simeq\kappa/\beta_0\), the ratio of the Ginzburg-Landau parameter \(\kappa\) and the first eigenvalue \(\beta_0\) of a twisted Laplacian operator, and that superconductivity nucleates at the boundary when the applied field is close to \(H_{C_3}\). In the case of a spatially non-homogeneous applied field, we give an estimate for the upper critical value and find that superconducting properties may persist only in the interior of the domain. In addition, we show that the order parameter concentrates at the minimum points of the applied field.


35Q55 NLS equations (nonlinear Schrödinger equations)
82D55 Statistical mechanics of superconductors
Full Text: DOI


[1] P. Bauman, D. Phillips, Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, IMA Preprint Series No. 1416.
[2] F. Bethuel, H. Brézis, F. Hélein, Ginzburg-Landau Vortices, Birkhauser, Basel, (1994).
[3] Bethuel, F.; Riviere, T., Vortices for a variational problem related to superconductivity, ann. inst. H. poincare, Analyse non lineaire, 12, 243-303, (1995) · Zbl 0842.35119
[4] S. Chanillo, M. Kiessling, Symmetry of solutions of Ginzburg-Landau equations, Comp. Rend. Acad. Sci., Paris, t.321, Ser. I (1995) 1023-1026. · Zbl 0843.35004
[5] S.J. Chapman, Nucleation of superconductivity in decreasing fields, parts 1 and 2 Eur. J. Appl. Math. 5 (1994) 449-468 and 469-494. · Zbl 0820.35124
[6] Chapman, S.J.; Howison, S.D.; Ockendon, J.R., Macroscopic models for superconductivity, SIAM rev., 34, 529-560, (1992) · Zbl 0769.73068
[7] P.G. De Gennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966). · Zbl 0138.22801
[8] Du, Q.; Gunzburger, M.; Peterson, J., Analysis and approximation of the ginzburg – landau model of superconductivity, SIAM rev., 34, 45-81, (1992) · Zbl 0787.65091
[9] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2ed. Springer, Berlin, 1983. · Zbl 0562.35001
[10] Ginzburg, V.; Landau, L., On the theory of superconductivity, Soviet phys. JETP, 20, 1064-1082, (1950)
[11] A. Jaffe, C. Taubes, Vortices and Monopoles, Birkhauser, Basel, 1980. · Zbl 0457.53034
[12] Lin, F.-H., Solutions of ginzburg – landau equations and critical points of the renormalized energy, ann. inst. H. poincare, Analyse non lineaire, 12, 599-622, (1995) · Zbl 0845.35052
[13] Lu, K.; Pan, X.B., Ginzburg – landau equation with de Gennes boundary condition, J. diff. equations, 129, 136-165, (1996) · Zbl 0873.35088
[14] K. Lu, X.B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, Preprint. · Zbl 0943.35058
[15] K. Lu, X.B. Pan, Gauge invariant eigenvalue problems in \(R\^{}\{2\}\) and in \(R+\^{}\{2\}\), Trans. Am. Math. Soc., to appear. · Zbl 1053.35124
[16] Mironescu, P., On the stability of radial solutions of the ginzburg – landau equations, J. functional anal., 130, 334-347, (1995) · Zbl 0839.35011
[17] Neu, J., Vortices in complex scalar fields, Physica D, 43, 385-406, (1990) · Zbl 0711.35024
[18] Saint-James, D.; De Gennes, P., Onset of superconductivity in decreasing fields, Phys. lett., 6, 5, 306-308, (1963)
[19] Struwer, M., On the asymptotical behavior of minimizers of the ginzburg – landau model in 2-dimensions, J. diff. int. equations, 7, 1613-1627, (1994)
[20] R. Teman, Navier-Stokes Equations, Theory and Numerical Analysis, Elsevier, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.