Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. (English) Zbl 0934.62037

Summary: We propose a method of adaptive estimation of a regression function which is near optimal in the classical sense of the mean integrated error. At the same time, the estimator is shown to be very sensitive to discontinuities or change-points of the underlying function \(f\) or its derivatives. For instance, in the case of a jump of a regression function, beyond the intervals of length (in order) \(n^{-1}\log n\) around change-points the quality of estimation is essentially the same as if locations of jumps were known. The method is fully adaptive and no assumptions are imposed on the design, number and size of jumps. The results are formulated in a nonasymptotic way and can therefore be applied for an arbitrary sample size.


62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI


[1] BUCKLEY, M. J., EAGLESON, G. K. and SILVERMAN, B. W. 1988. The estimation of residual variance in nonparametric regression. Biometrika 75 189 199. Z. JSTOR: · Zbl 0639.62032
[2] CLEVELAND, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Soc. 74 829 836. Z. · Zbl 0423.62029
[3] DELy ON, B. and JUDITSKY, A. 1996. On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 215 228. Z. · Zbl 0865.62023
[4] DONOHO, D. L., JOHNSTONE, I. M., KERKy ACHARIAN, G. and PICARD, D. 1995. Wavelet shrinkage: Z. asy mptopia? with discussion J. Roy. Statist. Soc. Ser. B 57 301 369. Z. JSTOR:
[5] GASSER, T., SROKA, L. and JENNEN-STEINMETZ, CH. 1986. Residual variance and residual pattern in nonlinear regression. Biometrika 73 625 633. Z. JSTOR: · Zbl 0649.62035
[6] GOLDENSHLUGER, A. and NEMIROVSKI, A. 1994. On spatial adaptive estimation of nonparametric regression. Technical Report 5 94, Technion, Haifa. Z. · Zbl 0892.62018
[7] HALL, P., KERKy ACHARIAN, J. and PICARD, D. 1996. On the minimax optimality of block thresholded wavelet estimators. Statist. Sinica. To appear. Z. · Zbl 0915.62028
[8] HALL, P. and PATIL, P. 1995. Formulae for mean integrated squared error of nonlinear wavelet-based density estimators. Ann. Statist. 23 905 928. Z. · Zbl 0839.62042
[9] HINKLEY, D. 1970. Inference about a change point in a sequence of random variables. Biometrika 57 41 58. Z. JSTOR: · Zbl 0198.51501
[10] IBRAGIMOV, I. and KHASMINSKII, R. 1981. Statistical Estimation: Asy mptotic Theory. Springer, New York. Z.
[11] KATKOVNIK, V. JA. 1979. Linear and nonlinear methods of nonparametric regression analysis. Z. Avtomatika 5 35 46 in Russian. Z. · Zbl 0459.62048
[12] KATKOVNIK, V. JA. 1985. Nonparametric Identification and Data Smoothing: Local ApproximaZ. tion Approach. Nauka, Moscow in Russian. Z. · Zbl 0576.62050
[13] KOROSTELEV, A. 1987. On minimax estimation of a discontinuous signal. Theory Probab. Appl. 32 727 730. Z. · Zbl 0659.62103
[14] KOROSTELEV, A. and TSy BAKOV, A. 1993. Minimax Theory of Image Reconstruction. Springer, New York. Z. · Zbl 0833.62039
[15] LEPSKI, O., MAMMEN, E. and SPOKOINY, V. 1997. Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 929 947. Z. · Zbl 0885.62044
[16] LEPSKI, O. and SPOKOINY, V. 1997. Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 2512 2546. Z. · Zbl 0894.62041
[17] MULLER, H. 1992. Change-points in nonparametric regression analysis. Ann. Statist. 20 \" 737 761. · Zbl 0783.62032
[18] NEMIROVSKI, A. 1985. On nonparametric estimation of smooth function. Sov. J. Comput. Sy st. Sci. 23 1 11. Z.
[19] OUDSHOORN, C. 1995. Minimax estimation of a regression function with jumps: attaining the optimal constant. Technical Report 934, Dept. Mathematics, Univ. Utrecht. Z.
[20] PETROV, V. V. 1975. Sums of Independent Random Variables. Springer, New York. Z. Z. · Zbl 0322.60043
[21] STONE, C. J. 1977. Consistent nonparametric regression. with discussion Ann. Statist. 5 595 645. Z. · Zbl 0366.62051
[22] TRIEBEL, H. 1992. Theory of Function Spaces II. Birkhauser, Boston. \" Z. · Zbl 0763.46025
[23] TSy BAKOV, A. 1986. Robust reconstruction of functions by the local approximation. Problems Inform. Transmission 22 133 146. Z.
[24] WANG, Y. 1995. Jump and sharp cusp detection by wavelets. Biometrika 82 385 397. Z. JSTOR: · Zbl 0824.62031
[25] WU, J. and CHU, C. 1993. Kernel ty pe estimators of jump points and values of a regression function. Ann. Statist. 21 1545 1566. Z. · Zbl 0795.62043
[26] YIN, Y. 1988. Detection of the number, locations and magnitudes of jumps. Comm. Statist. Stochastic Models 4 445 455. · Zbl 0666.62080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.