×

zbMATH — the first resource for mathematics

Universal regularizations. IV: Compensations of diagrams in Ward identities. (English. Russian original) Zbl 0934.81030
Theor. Math. Phys. 108, No. 2, 1046-1068 (1996); translation from Teor. Mat. Fiz. 108, No. 2, 249-275 (1996).
Summary: [For Parts I–III, see O. I. Zav’yalov and A. M. Malokostov, Theor. Math. Phys. 84, 706–718 (1991; Zbl 0934.81029); ibid., 809–815 (1991; Zbl 1019.81506); ibid., 952–960 (1990; Zbl 1020.81727).]
On the diagram level, we describe the mechanism of compensations in Ward identities for non-Abelian gauge theories. The description of this mechanism allows one to analyze the non-Lagrangian regularizations. We propose a regularization (different from dimensional regularization and the higher covariant derivative method) from the class of “universal” regularizations. Our regularization keeps the gauge invariance of the Yang-Mills theory in the one-loop approximation, and in two-loop approximation at least for the polarization operator.

MSC:
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T70 Quantization in field theory; cohomological methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] O. I. Zavialov and A. M. Malokostov,Teor. Mat. Fiz.,84, 46–63 (1990).
[2] O. I. Zavialov and A. M. Malokostov,Teor. Mat. Fiz.,84, 195–204 (1990).
[3] O. I. Zavialov,Renormalized Quantum Field Theory, Kluwer Academic Publishers, Dordrecht, Holland (1990).
[4] O. I. Zavialov and A. M. Malokostov,Teor. Mat. Fiz.,84, 398–410 (1990).
[5] G. ’t Hooft,Nucl. Phys. B,33, 173 (1971).
[6] O. I. Zavialov and V. A. Smirnov,Teor. Mat. Fiz.,96, 288–301 (1993); O. I. Zavialov,Teor. Mat. Fiz.,98, 536–543 (1994); O. I. Zavialov, G. A. Kravtsova, and A. M. Malokostov,Teor. Mat. Fiz.,107, 64–74 (1996).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.