Discontinuous Galerkin methods. Theory, computation and applications. 1st international symposium on DGM, Newport, RI, USA, May 24–26, 1999. (English) Zbl 0935.00043

Lecture Notes in Computational Science and Engineering. 11. Berlin: Springer. xi, 470 p. (2000).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Cockburn, Bernardo; Karniadakis, George E.; Shu, Chi-Wang, The development of discontinuous Galerkin methods, 3-50 [Zbl 0989.76045]
Atkins, Harold L., Steps toward a robust high-order simulation tool for aerospace applications, 53-61 [Zbl 0991.76038]
Barth, Timothy J., Simplified discontinuous Galerkin methods for systems of conservation laws with convex extension, 63-75 [Zbl 0946.65087]
Bassi, F.; Rebay, S., A high-order discontinuous Galerkin method for compressible turbulent flows, 77-88 [Zbl 0991.76039]
Arnold, Douglas N.; Brezzi, Franco; Cockburn, Bernardo; Marini, Donatella, Discontinuous Galerkin methods for elliptic problems, 89-101 [Zbl 0948.65127]
Falk, Richard S., Analysis of finite element methods for linear hyperbolic problems, 103-112 [Zbl 0946.65081]
Flaherty, J. E.; Loy, R. M.; Shephard, M. S.; Teresco, J. D., Software for the parallel adaptive solution of conservation laws by discontinuous Galerkin methods, 113-123 [Zbl 0946.65089]
Gremaud, Pierre A.; Matthews, John V., Simulation of gravity flow of granular materials in silos., 125-134 [Zbl 1041.76541]
Hughes, Thomas J. R.; Engel, Gerald; Mazzei, Luca; Larson, Mats G., A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency, 135-146 [Zbl 0946.65109]
Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang, The utility of modeling and simulation in determinig transport performance properties of semiconductors, 143-156 [Zbl 0956.82029]
Karakashian, Ohannes; Katsaounis, Theodoros, A discontinuous Galerkin method for the incompressible Navier-Stokes equations, 157-166 [Zbl 0991.76044]
Lin, Qun, Full convergence for hyperbolic finite elements, 167-177 [Zbl 0946.65073]
Oden, J. Tinsley; Baumann, Carlos Erik, A conservative DGM for convection-diffusion and Navier-Stokes problems, 179-196 [Zbl 0988.76053]
Bassi, F.; Rebay, S., GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations, 197-208 [Zbl 0989.76040]
Falk, Richard S.; Richter, Gerard R., Explicit finite element methods for linear hyperbolic systems, 209-219 [Zbl 0946.65082]
Süli, Endre; Schwab, Christoph; Houston, Paul, \(hp\)-DGFEM for partial differential equations with nonnegative characteristic form, 221-230 [Zbl 0946.65102]
Rivière, Béatrice; Wheeler, Mary F., A discontinuous Galerkin method applied to nonlinear parabolic equations, 231-244 [Zbl 0946.65078]
Aharoni, Dan; Barak, Amnon, Parallel iterative discontinuous Galerkin finite-element methods, 247-254 [Zbl 0945.65126]
Augoula, Steeve; Abgrall, Rémi, A discontinuous projection algorithm for Hamilton Jacobi equations, 255-261 [Zbl 0945.65111]
Bogaerds, Arjen C. B.; Verbeeten, Wilco M. H.; Baaijens, Frank P. T., Successes and failures of discontinuous Galerkin methods in viscoelastic fluid analysis, 263-270 [Zbl 0989.76042]
Cai, Wei, High order current basis functions for eletromagnetic scattering of curved surfaces, 271-276 [Zbl 0957.78009]
Carranza, F. L.; Haber, R. B., An adaptive discontinuous Galerkin model for coupled viscoplastic crack growth and chemical transport., 277-283 [Zbl 1041.74503]
Castillo, Paul, An optimal estimate for the local discontinuous Galerkin method, 285-290 [Zbl 0946.65072]
Cockburn, Bernardo; Luskin, Mitchell; Shu, Chi-Wang; Süli, Endre, Post-processing of Galerkin methods for hyperbolic problems, 291-300 [Zbl 0946.65085]
Coult, Nicholas, Introduction to discontinuous wavelets, 301-308 [Zbl 0948.65151]
Dawson, Clint; Aizinger, Vadym; Cockburn, Bernardo, The local discontinuous Galerkin method for contaminant transport problems., 309-314 [Zbl 1041.76540]
Despres, Bruno, Discontinuous Galerkin method for the numerical solution of Euler equations in axisymmetric geometry., 315-320 [Zbl 1041.76553]
Fortin, A.; Béliveau, A.; Heuzey, M. C.; Lioret, A., Ten years using discontinuous Galerkin methods for polymer processing problems., 321-326 [Zbl 1041.82554]
Estep, Donald J.; Freund, Roland W., Using Krylov-subspace iterations in discontinuous Galerkin methods for nonlinear reaction-diffusion systems, 327-335 [Zbl 0946.65079]
Greenstadt, John, An abridged history of cell discretization, 337-342 [Zbl 0946.65107]
Hu, Changqing; Lepsky, Olga; Shu, Chi-Wang, The effect of the least square procedure for discontinuous Galerkin methods for Hamilton-Jacobi equations, 343-348 [Zbl 0946.65086]
Kanschat, Guido; Suttmeier, Franz-Theo, A posteriori error estimate in the case of insufficient regularity of the discrete space, 349-354 [Zbl 0945.65119]
Kopriva, David A.; Woodruff, Stephen L.; Hussaini, M. Y., Discontinuous spectral element approximation of Maxwell’s equations, 355-361 [Zbl 0957.78023]
Larson, Mats G.; Barth, Timothy J., A posteriori error estimation for adaptive discontinuous Galerkin approximations of hyperbolic systems, 363-368 [Zbl 0946.65074]
Liu, Jian-Guo; Shu, Chi-Wang, A numerical example on the performance of high order discontinuous Galerkin method for 2D incompressible flows., 369-374 [Zbl 1041.76517]
Lomtev, I.; Kirby, R. M.; Karniadakis, G. E., A discontinuous Galerkin method in moving domains, 375-383 [Zbl 0989.76048]
Lowrie, Robert B.; Morel, Jim E., Discontinuous Galerkin for hyperbolic systems with stiff relaxation, 385-390 [Zbl 0946.65088]
Machiels, Luc, Finite element output bounds for parabolic equations: Application to heat conduction problems, 391-396 [Zbl 0946.65077]
Prasad, Manoj K.; Milovich, Jose L.; Shestakov, Aleksei I.; Kershaw, David S.; Shaw, Michael J., 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous Galerkin method., 397-405 [Zbl 1041.76544]
Rasetarinera, P.; Hussaini, M. Y.; Hu, F. Q., Some remarks on the accuracy of a discontinuous Galerkin method, 407-412 [Zbl 0946.65083]
Sardella, Mirko, Coupling continuous and discontinuous techniques: An adaptive approach, 413-418 [Zbl 0948.65126]
Schwanenberg, Dirk; Köngeter, Jürgen, A discontinuous Galerkin method for the shallow water equations with source terms., 419-429 [Zbl 1041.76512]
Sherwin, Spencer, Dispersion analysis of the continuous and discontinuous Galerkin formulations, 425-431 [Zbl 0946.65084]
Swann, Howard, The cell discretization algorithm; An overview, 433-438 [Zbl 0946.65108]
van der Ven, H.; van der Vegt, J. J. W., Accuracy, resolution, and computational complexity of a discontinuous Galerkin finite element method., 439-444 [Zbl 1041.76546]
Wang, Hong, An ELLAM scheme for porous medium flows., 445-450 [Zbl 1041.76561]
Warburton, Tim, Application of the discontinuous Galerkin method to Maxwell’s equations using unstructured polymorphic \(hp\)-finite elements, 451-458 [Zbl 0957.78011]
Yin, Lin; Acharya, Amit; Sobh, Nahil; Haber, Robert B.; Tortorelli, Daniel A., A space-time discontinuous Galerkin method for elastodynamic analysis., 459-464 [Zbl 1041.74553]
Zhang, Zhimin, Nonconforming, enhanced strain, and mixed finite element methods – a unified approach., 465-470 [Zbl 1041.74554]


00B25 Proceedings of conferences of miscellaneous specific interest
65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis
74-06 Proceedings, conferences, collections, etc. pertaining to mechanics of deformable solids
76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics