zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two views of the theory of rough sets in finite universes. (English) Zbl 0935.03063
Summary: This paper presents and compares two views of the theory of rough sets. The operator-oriented view interprets rough set theory as an extension of set theory with two additional unary operators. Under such a view, lower and upper approximations are related to the interior and closure operators in topological spaces, the necessity and possibility operators in modal logic, and lower and upper approximations in interval structures. The set-oriented view focuses on the interpretation and characterization of members of rough sets. Iwinski type rough sets are formed by pairs of definable (composed) sets, which are related to the notion of interval sets. Pawlak type rough sets are defined based on equivalence classes of an equivalence relation on the power set. The relation is defined by the lower and upper approximations. In both cases, rough sets may be interpreted by, or related to, families of subsets of the universe, i.e., elements of a rough set are subsets of the universe. Alternatively, rough sets may be interpreted using elements of the universe based on the notion of rough membership functions. Both operator-oriented and set-oriented views are useful in the understanding and application of the theory of rough sets.

MSC:
03E72Fuzzy set theory
68T37Reasoning under uncertainty
WorldCat.org
Full Text: DOI
References:
[1] Bonikowski, Z.: A certain conception of the calculus of rough sets. Notre dame J. Formal logic 33, 412-421 (1992) · Zbl 0762.04001
[2] Bonikowski, Z.: Algebraic structures of rough sets. Rough sets, fuzzy sets and knowledge discovery, 242-247 (1994) · Zbl 0819.04009
[3] Bryniarski, E.: A calculus of rough sets of the first order. Bull. Polish acad. Sci. math. 37, 71-77 (1989) · Zbl 0756.04002
[4] Bundy, A.: Incidence calculus: A mechanism for probabilistic reasoning. J. automat. Reason. 1, 263-283 (1985) · Zbl 0615.68067
[5] Chakraborty, M. K.; Banerjee, M.: Rough consequence and rough algebra. Rough sets, fuzzy sets and knowledge discovery, 196-207 (1994) · Zbl 0818.03014
[6] Chanas, S.; Kuchta, D.: Further remarks on the relation between rough and fuzzy sets. Fuzzy sets and systems 47, 391-394 (1992) · Zbl 0755.04008
[7] Chellas, B. F.: Modal logic: an introduction. (1980) · Zbl 0431.03009
[8] Chuchro, M.: On rough sets in topological Boolean algebras. Rough sets, fuzzy sets and knowledge discovery, 157-166 (1994) · Zbl 0822.68106
[9] Comer, S.: On connections between information systems, rough sets, and algebraic logic. Banach center publications 28, 117-124 (1993) · Zbl 0793.03074
[10] Dubois, D.; Prade, H.: Rough fuzzy sets and fuzzy rough sets. Internat. J. Gen. systems 17, 191-209 (1990) · Zbl 0715.04006
[11] Fagin, R.; Halpern, J. Y.: Uncertainty, belief, and probability. Comput. intell. 7, 160-173 (1991) · Zbl 0718.68066
[12] Gehrke, M.; Walker, E.: On the structure of rough sets. Bull. Polish acad. Sci. math. 40, 235-245 (1992) · Zbl 0778.04002
[13] Goodman, I.; Nguyen, H.; Walker, E.: Conditional inference and logic for intelligent systems. (1991)
[14] Hughes, G. E.; Cresswell, M. J.: An introduction to modal logic. (1968) · Zbl 0205.00503
[15] Iwinski, T. B.: Algebraic approach to rough sets. Bull. Polish acad. Sci. math. 35, 673-683 (1987) · Zbl 0639.68125
[16] Kortelainen, J.: On relationship between modified sets, topological spaces and rough sets. Fuzzy sets and systems 61, 91-95 (1994) · Zbl 0828.04002
[17] Kramosil, I.: Definition and recognition of classical sets by the rough ones. Problem control and inform. Theory 20, 77-95 (1991) · Zbl 0738.62004
[18] Lemmon, E. J.: Algebraic semantics for modal logics I,II. J. symbolic logic 31, 191-218 (1966) · Zbl 0147.24805
[19] Lin, T. Y.: Topological and fuzzy rough sets. Intelligent decision support: handbook of applications and advances of the rough sets theory, 287-304 (1992)
[20] Lin, T. Y.: Fuzzy reasoning and rough sets. Rough sets, fuzzy sets and knowledge discovery, 343-348 (1994) · Zbl 0827.68106
[21] Lin, T. Y.: Proceedings of the CSC ’95 workshop on rough sets and database mining. (1995)
[22] Lin, T. Y.; Liu, Q.: Rough approximate operators: axiomatic rough set theory. Rough sets, fuzzy sets and knowledge discovery, 256-260 (1994) · Zbl 0818.03028
[23] Lin, T. Y., and Liu, Q., First order rough logic I: Approximate reasoning via rough sets, Fund. Inform., to appear. · Zbl 0853.03007
[24] Lin, T. Y.; Liu, Q.; Huang, K. J.; Chen, W.: Rough sets, neighborhood systems and approximation. Proceedings of the fifth international symposium on methodologies of intelligent systems, 130-141 (1990)
[25] Lin, T. Y.; Wildberger, A. M.: Soft computing. (1995)
[26] Moore, R. E.: Interval analysis. (1966) · Zbl 0176.13301
[27] Nakamura, A.; Gao, J. M.: A logic for fuzzy data analysis. Fuzzy sets and systems 39, 127-132 (1991) · Zbl 0729.03015
[28] Negoi\nia\check{}, C. V.; Ralescu, D. A.: Applications of fuzzy sets to systems analysis. (1975)
[29] Nguyen, H. T.: Intervals in Boolean rings: approximation and logic. Found. comput. Decision sci. 17, 131-138 (1992) · Zbl 0781.06011
[30] Nguyen, H. T.; Walker, E. A.: A history and introduction to the algebra of conditional events and probability logic. IEEE trans. Systems man cybernet. 24, 1671-1675 (1994)
[31] Novotny, M.; Pawlak, Z.: On rough equalities. Bull. Polish acad. Sci. math. 33, 99-113 (1985) · Zbl 0569.68084
[32] Obtulowicz, A.: Rough sets and heyting algebra valued sets. Bull. Polish acad. Sci. math. 35, 667-671 (1987) · Zbl 0642.03039
[33] Orlowska, E.: Logic of indiscernibility relations. Bull. Polish acad. Sci. math. 33, 475-485 (1985) · Zbl 0584.03013
[34] Orlowska, E.: Logical aspects of learning concepts. Internat. J. Approx. reason. 2, 349-364 (1988) · Zbl 0656.68094
[35] Orlowska, E.: Rough set semantics for non-classical logics. Rough sets, fuzzy sets and knowledge discovery, 143-148 (1994)
[36] Orlowska, E.; Pawlak, Z.: Measurement and indiscernibility. Bull. Polish acad. Sci. math. 32, 617-624 (1984) · Zbl 0583.68051
[37] Pagliani, P.: A pure logic-algebraic analysis of rough top and rough bottom equalities. Rough sets, fuzzy sets and knowledge discovery, 225-241 (1994) · Zbl 0819.04010
[38] Pawlak, Z.: Rough sets. Internat. J. Comput. & inform. Sci. 11, 341-356 (1982) · Zbl 0501.68053
[39] Pawlak, Z.: Rough classification. Internat. J. Man-machine. Stud. 20, 469-483 (1984) · Zbl 0541.68077
[40] Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy sets and systems 17, 99-102 (1985) · Zbl 0588.04004
[41] Pawlak, Z.: Rough logic. Bull. Polish acad. Sci. tech. Sci. 35, 253-258 (1987) · Zbl 0645.03019
[42] Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data. (1991) · Zbl 0758.68054
[43] Pawlak, Z.: Rough sets: A new approach to vagueness. Fuzzy logic for the management of uncertainty, 105-118 (1992)
[44] Pawlak, Z.: Hard and soft sets. Rough sets, fuzzy sets and knowledge discovery, 130-135 (1994) · Zbl 0819.04008
[45] Pawlak, Z.; Skowron, A.: Rough membership functions. Fuzzy logic for the management of uncertainty, 251-271 (1994)
[46] Pawlak, Z.; Wong, S. K. M.; Ziarko, W.: Rough sets: probabilistic versus deterministic approach. Internat. J. Man-machine stud. 29, 81-95 (1988) · Zbl 0663.68094
[47] Pomykala, J. A.: Approximation operations in approximation space. Bull. Polish acad. Sci. math. 35, 653-662 (1987) · Zbl 0642.54002
[48] Pomykala, J.; Pomykala, J. A.: The stone algebra of rough sets. Bull. Polish acad. Sci. math. 36, 495-508 (1988)
[49] Rasiowa, H.: An algebraic approach to non-classical logics. (1974) · Zbl 0299.02069
[50] Shafer, G.: Belief functions and possibility measures. Analysis of fuzzy information, vol. 1: mathematics and logic 1, 51-84 (1987) · Zbl 0655.94025
[51] Skowron, A.: The rough sets theory and evidence theory. Fund. inform. 13, 245-262 (1990) · Zbl 0752.94023
[52] Skowron, A.; Grzymala-Busse, J.: From rough set theory to evidence theory. Advances in the Dempster-Shafer theory of evidence, 193-236 (1994)
[53] Slowinski, R.: Intelligent decision support: handbook of applications and advances of the rough sets theory. (1992) · Zbl 0820.68001
[54] Wasilewska, A.: Topological rough algebras. (1995) · Zbl 0860.03042
[55] Wiweger, A.: On topological rough sets. Bull. Polish acad. Sci. math. 37, 89-93 (1989) · Zbl 0755.04010
[56] Wong, S. K. M.; Wang, L. S.; Yao, Y. Y.: On modeling uncertainty with interval structures. Comput. intell. 11, 406-426 (1995)
[57] Wong, S. K. M.; Ziarko, W.: Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy sets and systems 21, 357-362 (1987) · Zbl 0618.60002
[58] Wybraniec-Skardowska, U.: On a generalization of approximation space. Bull. Polish acad. Sci. math. 37, 51-61 (1989) · Zbl 0755.04011
[59] Wygralak, M.: Rough sets and fuzzy sets--some remarks on interreletations. Fuzzy sets and systems 29, 241-243 (1989) · Zbl 0664.04010
[60] Yao, Y. Y.: Interval-set algebra for qualitative knowledge representation. Proceedings of the fifth international conference on computing and information, 370-375 (1993)
[61] Yao, Y. Y.: On combining rough and fuzzy sets. Proceedings of the CSC ’95 workshop on rough sets and database mining, 9 (1995)
[62] Yao, Y. Y.; Li, X.: Uncertain reasoning with interval-set algebra. Rough sets, fuzzy sets and knowledge discovery, 178-185 (1994) · Zbl 0819.68119
[63] Yao, Y. Y.; Li, X.; Lin, T. Y.; Liu, Q.: Representation and classification of rough set models. Soft computing, 44-47 (1995)
[64] Yao, Y. Y.; Lin, T. Y.: Generalization of rough sets using modal logic. Intell. automat. And soft comput. Internat. J. 2, 103-120 (1996)
[65] Yao, Y. Y.; Noroozi, N.: A unified model of set-based computation. Soft computing, 252-255 (1995)
[66] Yao, Y. Y.; Wong, S. K. M.: A decision theoretic framework for approximating concepts. Internat. J. Man-machine stud. 37, 793-809 (1992)
[67] Yao, Y. Y.; Wong, S. K. M.; Wang, L. S.: A non-numeric approach to uncertain reasoning. Internat. J. Gen. systems 23, 343-359 (1995) · Zbl 0850.68298
[68] Zakowski, W.: Approximations in the space (U, II). Demonstratio math. 16, 761-769 (1983)
[69] Zadeh, L. A.: Fuzzy sets. Inform. & control 8, 338-353 (1965) · Zbl 0139.24606
[70] Ziarko, W. P.: Rough sets, fuzzy sets and knowledge discovery. (1994) · Zbl 0825.68612