×

Fuzzy \(H_v\)-groups. (English) Zbl 0935.20065

The fuzzy subhypergroups of a hypergroup and the fuzzy \(H_v\)-group of an \(H_v\)-group are defined and studied in this paper. The most interesting result is the main theorem concerning the fundamental group of the underlying \(H_v\)-group. This result proves, once more, how interesting the fundamental relations in the study of hyperstructures are.

MSC:

20N20 Hypergroups
20N25 Fuzzy groups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anthony, J.M.; Sherwood, H., Fuzzy groups redefined, J. math. anal. appl., 69, 124-130, (1979) · Zbl 0413.20041
[2] Corsini, P., Joint spaces, power sets, fuzzy sets, () · Zbl 1066.20071
[3] Corsini, P., ()
[4] Corsini, P.; Vougiouklis, T., From groupoids to groups through hypergroups, Rendiconti math. S., VII, 9, 173-181, (1989) · Zbl 0795.20062
[5] Das, P.S., Fuzzy groups and level subgroups, J. math. anal. appl., 84, 264-269, (1981) · Zbl 0476.20002
[6] Freni, D., Una nota sul coure di un ipergruppo e sulla chiu transitiva \(β\^{}\{∗\}\) di β, Rivista math. pura appl., 8, 153-156, (1991)
[7] Rosenfeld, A., Fuzzy groups, J. math. anal. appl., 35, 512-517, (1971) · Zbl 0194.05501
[8] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. math., 10, 313-334, (1960) · Zbl 0091.29801
[9] Vougiouklis, T., Hyperstructures and their representations, (1994), Hadronic Press Florida · Zbl 0828.20076
[10] T. Vougiouklis, A new class of hyperstructures, J. Combin. Inf. System Sci., to appear. · Zbl 0874.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.