zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Propagation failure of traveling waves in a discrete bistable medium. (English) Zbl 0935.35070
Summary: Propagation failure (pinning) of traveling waves is studied in a discrete scalar reaction-diffusion equation with a piecewise linear, bistable reaction function. The critical points of the pinning transition, and the wavefront profile at the onset of propagation are calculated exactly. The scaling of the wave speed near the transition, and the leading corrections to the front shape are also determined. We find that the speed vanishes logarithmically close to the critical point, thus the model belongs to a different universality class than the standard Nagumo model, defined with a smooth, polynomial reaction function.

35K57Reaction-diffusion equations
Full Text: DOI
[1] Scott, A. C.: Active and nonlinear wave propagation in electronics. (1970)
[2] Fife, P. C.; Mcleod, J. B.: Arch. rational mech. Anal.. 65, 333 (1977)
[3] Keener, J. P.: J. theoret. Biol.. 148, 49 (1991)
[4] Zinner, B.: J. diff. Eqns.. 96, 1 (1992)
[5] Erneux, T.; Nicolis, G.: Physica D. 67, 237 (1993)
[6] Perez-Munuzuri, V.; Perez-Villar, V.; Chua, L. O.: Int. J. Bifurc. & chaos. 2, 403 (1992)
[7] Laplante, J. P.; Erneux, T.: J. phys. Chem.. 96, 4931 (1992)
[8] Perez-Munuzuri, V.; Perez-Villar, V.; Chua, L. O.: J. circuits systems comput. 3, 215 (1993) · Zbl 0875.94136
[9] Rinzel, J.: Ann. NY acad. Sci.. 591, 51 (1990)
[10] G. Fáth, unpublished.
[11] Abramovitz, M.; Stegun, I. A.: Handbook of mathematical functions. (1964)
[12] Erdélyi, A.: Tables of integral transforms. (1954) · Zbl 0055.36401
[13] Hansen, E. R.: A table of series and products. (1975) · Zbl 0438.00001