zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-dimensional solitary waves for a Benney-Luke equation. (English) Zbl 0935.35139
Summary: We prove the existence of finite-energy solitary waves for isotropic Benney-Luke equations that arise in the study of the evolution of small amplitude, three-dimensional water waves when the horizontal length scale is long compared with depth. The family of Benney-Luke equations discussed in this paper includes the effect of surface tension and a variety of equivalent forms of dispersion. These equations reduce formally to the Korteweg-de Vries (KdV) equation and to the Kadomtsev-Petviashvili (KP-I or KP-II) equation in the appropriate limits. Existence of finite-energy solitary waves or lumps is proved via the concentration-compactness method. When surface tension is sufficiently strong (Bond number larger than 1/3), we prove that a suitable family of Benney-Luke lump solutions converges to a nontrivial lump solution for the KP-I equation.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
76B25Solitary waves (inviscid fluids)
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
WorldCat.org
Full Text: DOI
References:
[1] Benney, D. J.; Luke, J. C.: Interactions of permanent waves of finite amplitude. J. math. Phys. 43, 309-313 (1964) · Zbl 0128.44601
[2] Milewski, P. A.; Keller, J. B.: Three dimensional water waves. Studies appl. Math. 37, 149-166 (1996) · Zbl 0860.35115
[3] De Bouard, A.; Saut, J. C.: Solitary waves of generalized Kadomtsev--Petviashvili equations. CR acad. Sci. Paris sér I math. 320, No. 3, 315-318 (1995) · Zbl 0833.35028
[4] De Bouard, A.; Saut, J. C.: Solitary waves of generalized Kadomtsev--Petviashvili equations. Ann. inst. H. Poincaré anal. Non linéaire 14, No. 2, 211-236 (1997) · Zbl 0883.35103
[5] Kadomtsev, B. B.; Petviashvili, V. I.: On the stability of solitary waves in weakly dispersing media. Soviet phys. Dokl. 15, 539-541 (1970) · Zbl 0217.25004
[6] Zakharov, V. E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Philos. mag. Ser. 9, No. 2, 190-194 (1968)
[7] M.J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants á l’Académie des Sciences Inst. France (séries 2) 23 (1877) 1-680.
[8] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990. · Zbl 0746.49010