Seppäläinen, Timo Entropy for translation-invariant random-cluster measures. (English) Zbl 0935.60098 Ann. Probab. 26, No. 3, 1139-1178 (1998). Summary: We study translation-invariant random-cluster measures with techniques from large deviation theory and convex analysis. In particular, we prove a large deviation principle with rate function given by a specific entropy, and a Dobrushin-Lanford-Ruelle variational principle that characterizes translation-invariant random-cluster measures as the solutions of the variational equation for free energy. Consequences of these theorems include inequalities for edge and cluster densities of translation-invariant random-cluster measures. Cited in 5 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60F10 Large deviations 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics 82B43 Percolation Keywords:relative entropy; variational principle; large deviations; random-cluster measure PDF BibTeX XML Cite \textit{T. Seppäläinen}, Ann. Probab. 26, No. 3, 1139--1178 (1998; Zbl 0935.60098) Full Text: DOI References: [1] AIZENMAN, M. 1980. Translation invariance and instability of phase coexistence in the two dimensional Ising system. Comm. Math. Phys. 73 83 94. [2] AIZENMAN, M., CHAYES, J. T., CHAYES, L. and NEWMAN, C. M. 1988. Discontinuity of the 2 magnetization in one-dimensional 1 x y Ising and Potts models. J. Statist. Phys. 50 1 40. · Zbl 1084.82514 [3] BILLINGSLEY, P. 1968. Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201 [4] BOLLOBAS, B., GRIMMETT, G. and JANSON, S. 1996. The random-cluster model on the ćomplete graph. Probab. Theory Related Fields 104 283 317. · Zbl 0846.05075 [5] BORGS, C. and CHAYES, J. T. 1996. The covariance matrix of the Potts model: a random cluster analysis. J. Statist. Phys. 82 1235 1297. · Zbl 1042.82510 [6] BURTON, R. M. and KEANE, M. 1989. Density and uniqueness in percolation. Comm. Math. Phys. 121 501 505. · Zbl 0662.60113 [7] DEMBO, A. and ZEITOUNI, O. 1993. Large Deviations Techniques and Applications. Jones and Bartlett, Boston. · Zbl 0793.60030 [8] DEUSCHEL, J.-D. and STROOCK, D. W. 1989. Large Deviations. Academic Press, San Diego. · Zbl 0675.60086 [9] DEUSCHEL, J.-D., STROOCK, D. W. and ZESSIN, H. 1991. Microcanonical distributions for lattice gases. Comm. Math. Phys. 139 83 101. · Zbl 0727.60025 [10] DONSKER, M. D. and VARADHAN, S. R. S. 1976. Asymptotic evaluation of certain Markov process expectations for large time, III. Comm. Pure Appl. Math. 29 389 461. · Zbl 0348.60032 [11] EDWARDS, R. G. and SOKAL, A. D. 1988. Generalization of the Fortuin Kasteleyn Swendsen Wang representation and Monte Carlo algorithm. Phys. Rev. D 38 2009 2012. [12] EKELAND, I. and TEMAM, R. 1976. Convex Analysis and Variational Problems. North-Holland, Amsterdam. · Zbl 0322.90046 [13] ELLIS, R. W. 1985. Entropy, Large Deviations, and Statistical Mechanics. Springer, Berlin. · Zbl 0566.60097 [14] FERNANDEZ, R. and PFISTER, C.-E. 1997. Global specifications and nonquasilocality of ṕrojections of Gibbs measures. Ann. Probab. 25 1284 1315. · Zbl 0895.60096 [15] FOLLMER, H. and OREY, S. 1988. Large deviations for the empirical field of a Gibbs \" measure. Ann. Probab. 16 961 977. · Zbl 0648.60028 [16] FORTUIN, C. M. 1972. On the random cluster model. II. The percolation model. Physica 58 393 418. [17] FORTUIN, C. M. 1972. On the random cluster model. III. The simple random-cluster process. Physica 59 545 570. [18] FORTUIN, C. M. and KASTELEYN, P. W. 1972. On the random cluster model. I. Introduction and relation to other models. Physica 57 536 564. [19] GANDOLFI, A., KEANE, M. S. and NEWMAN, C. M. 1992. Uniqueness of the infinite component in a random graph with applications to spin glasses and percolation. Probab. Theory Related Fields 92 511 527. · Zbl 0767.60098 [20] GEORGII, H.-O. 1988. Gibbs Measures and Phase Transitions. de Gruyter, Berlin. · Zbl 0657.60122 [21] GRIMMETT, G. 1994. The random-cluster model. In Probability, Statistics, and Optimisation F. P. Kelley, ed. 49 63. Wiley, New York. · Zbl 0858.60093 [22] GRIMMETT, G. 1994. Percolative problems. In Probability and Phase Transition G. Grim. mett, ed. 69 86. Kluwer, Dordrecht. · Zbl 0830.60094 [23] GRIMMETT, G. 1995. The stochastic random-cluster process and the uniqueness of random-cluster measures. Ann. Probab. 23 1461 1510. · Zbl 0852.60105 [24] HAGGSTROM, O. 1995. Random-cluster measures and uniform spanning trees. Stochastic \" \" Process. Appl. 59 267 275. · Zbl 0840.60089 [25] HAGGSTROM, O. 1996. Almost sure quasilocality fails for the random-cluster model on a \" ẗree, J. Statist. Phys. 84 1351 1361. · Zbl 1081.82520 [26] HAGGSTROM, O. Random-cluster representations in the study of phase-transitions. Unpub\" \" lished manuscript. [27] HIGUCHI, Y. 1981. On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model. In Random Fields: Rigorous Results in StatisticalMechanics and Quantum Field Theory J. J. Fritz, J. L. Lebowitz and D. Szasz, eds. 517 534. North Holland, Amsterdam. · Zbl 0496.60099 [28] LAANAIT, L., MESSAGER, A., MIRACLE-SOLE, S., RUIZ, J. and SHLOSMAN, S. 1991. Interfaces in the Potts model I: Pirogov Sinai theory of the Fortuin Kasteleyn representation. Comm. Math. Phys. 140 81 91. · Zbl 0734.60108 [29] LIGGETT, T. M. 1985. Interacting Particle Systems. Springer, New York. · Zbl 0559.60078 [30] NEWMAN, C. M. and SCHULMAN, L. S. 1981. Infinite clusters in percolation models. J. Statist. Phys. 26 613 628. · Zbl 0509.60095 [31] OLLA, S. 1988. Large deviations for Gibbs random fields. Probab. Theory Related Fields 77 343 357. · Zbl 0621.60031 [32] PEMANTLE, R. 1991. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19 1559 1574. · Zbl 0758.60010 [33] PFISTER, C.-E. and VANDE VELDE, K. 1995. Almost sure quasilocality in the random cluster model. J. Statist. Phys. 79 765 774. · Zbl 1081.82528 [34] PISZTORA, A. 1996. Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields 104 427 466. · Zbl 0842.60022 [35] PRESTON, C. 1976. Random Fields. Lecture Notes in Math. 534. Springer, Heidelberg. · Zbl 0335.60074 [36] ROCKAFELLAR, R. T. 1970. Convex Analysis. Princeton Univ. Press. · Zbl 0193.18401 [37] RUDIN, W. 1973. Functional Analysis, McGraw-Hill, New York. · Zbl 0253.46001 [38] SEPPALAINEN, T. 1993. Large deviations for lattice systems I. Parametrized independent \" \" fields. Probab. Theory Related Fields 96 241 260. · Zbl 0792.60025 [39] SEPPALAINEN, T. 1995. Entropy, limit theorems, and variational principles for disordered \" \" lattice systems. Comm. Math. Phys. 171 233 277. · Zbl 0835.60090 [40] SWENDSEN, R. H. and WANG, J.-S. 1987. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58 86 88. [41] VARADHAN, S. R. S. 1984. Large Deviations and Applications. SIAM, Philadelphia. · Zbl 0549.60023 [42] AMES, IOWA 50011 E-MAIL: seppalai@iastate.edu This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.