×

Regression-type inference in nonparametric autoregression. (English) Zbl 0935.62049

Summary: We derive a strong approximation of a local polynomial estimator (LPE) in nonparametric autoregression by an LPE in a corresponding nonparametric regression model. This generally suggests the application of regression-typical tools for statistical inference in nonparametric autoregressive models. It provides an important simplification for the bootstrap method to be used: It is enough to mimic the structure of a nonparametric regression model rather than to imitate the more complicated process structure in the autoregressive case. As an example we consider a simple wild bootstrap, which is used for the construction of simultaneous confidence bands and nonparametric supremum-type tests.

MSC:

62G08 Nonparametric regression and quantile regression
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G09 Nonparametric statistical resampling methods
Full Text: DOI

References:

[1] AMOSOVA, N. N. 1972. On limit theorems for probabilities of moderate deviations. Vestnik Z. Leningrad. Univ. 13 5 14 in Russian. Z. · Zbl 0273.60015
[2] BROWN, L. D. and LOW, M. G. 1996. Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384 2398. Z. · Zbl 0867.62022 · doi:10.1214/aos/1032181159
[3] CSORGO, M. and REVESZ, P. 1981. Strong Approximations in Probability and Statistics. Aca\" \' \' demic, New York. Z.
[4] DAVy DOV, YU. A. 1970. The invariance principle for stationary processes. Theory Probab. Appl. 15 487 498. Z. · Zbl 0219.60030 · doi:10.1137/1115050
[5] DOUKHAN, P. 1994. Mixing: Properties and Examples. Lecture Notes in Statist. 85. Springer, New York. Z. · Zbl 0801.60027
[6] DOUKHAN, P., MASSART, P. and RIO, E. 1995. Invariance principles for absolutely regular empirical processes. Ann. Inst. H. Poincare Probab. Statist. 31 393 427. Ź. · Zbl 0817.60028
[7] FAN, J. 1992. Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 998 1004. Z. JSTOR: · Zbl 0850.62354 · doi:10.2307/2290637
[8] FAN, J. 1993. Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 196 216. Z. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[9] FAN, J. and GIJBELS, I. 1992. Variable bandwidth and local linear regression smoothers. Ann. Statist. 20 2008 2036. Z. · Zbl 0765.62040 · doi:10.1214/aos/1176348900
[10] FAN, J. and GIJBELS, I. 1995. Local Poly nomial Modeling and Its Application Theory and Methodologies. Chapman and Hall, New York. Z.
[11] FRANKE, J., KREISS, J.-P. and MAMMEN, E. 1997. Bootstrap of kernel smoothing in nonlinear time series. Discussion Paper 20 97, SFB 373, Humboldt Univ., Berlin. Z. · Zbl 1006.62038
[12] FRANKE, J., KREISS, J.-P., MAMMEN, E. and NEUMANN, M. H. 1998. Properties of the nonparametric autoregressive bootstrap. Unpublished manuscript. · Zbl 1062.62173
[13] HALL, P. 1991. On the distribution of suprema. Probab. Theory Related Fields 89 447 455. Z. · Zbl 0725.60024 · doi:10.1007/BF01199788
[14] HALL, P. and HEy DE, C. C. 1980. Martingale Limit Theory and Its Application. Academic Press, New York. Z. · Zbl 0462.60045
[15] HALL, P. and TITTERINGTON, M. 1988. On confidence bands in nonparametric density estimation and regression. J. Multvariate Anal. 27 228 254. Z. · Zbl 0664.62046 · doi:10.1016/0047-259X(88)90127-3
[16] HARDLE, W. and MAMMEN, E. 1993. Comparing nonparametric versus parametric regression \" fits. Ann. Statist. 21 1926 1947. Z. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[17] HARDLE, W. and TSy BAKOV, A. B. 1997. Local poly nomial estimators of the volatility function in \" nonparametric autoregression. J. Econometrics 81 223 242. Z. · Zbl 0904.62047 · doi:10.1016/S0304-4076(97)00044-4
[18] HART, J. D. 1995. Some automated methods of smoothing time-dependent data. J. Nonparametr. Statist. 6 115 142. Z. · Zbl 0878.62031 · doi:10.1080/10485259608832667
[19] JONES, D. A. 1978. Nonlinear regressive processes. Proc. Roy. Soc. London Ser. A 360 71 95. Z. · Zbl 0378.62076 · doi:10.1098/rspa.1978.0058
[20] KNAFL, G., SACKS, J. and YLVISAKER, D. 1985. Confidence bands for regression functions. J. Amer. Statist. Assoc. 80 683 691. Z. JSTOR: · Zbl 0577.62043 · doi:10.2307/2288485
[21] KOMLOS, J., MAJOR, P. and TUSNADY, G. 1975. An approximation of partial sums of independent \' ŕv’s and the sample distribution function. Z. Wahrsch. Verw. Gebiete 32 111 131. Z. · Zbl 0308.60029
[22] KONAKOV, V., LAUTER, H. and LIERO, H. 1995. Comparison of the asy mptotic power of tests \" based on L and L -norms under non-standard local alternatives. Discussion Paper 2 10 95, SFB 373, Humboldt Univ., Berlin. Z.
[23] KOROSTELEV, A. P. and TSy BAKOV, A. B. 1993. Minimax Theory of Image Reconstruction. Lecture Notes in Statist. 82. Springer, New York. Z. · Zbl 0833.62039
[24] KREISS, J.-P., NEUMANN, M. H. and YAO, Q. 1998. Bootstrap tests for simple structures in nonparametric time series regression. Preprint No. 98 07, TU Braunschweig. Z.
[25] MAMMEN, E. 1992. When Does Bootstrap Work? Asy mptotic Results and Simulations. Lecture Notes in Statist. 77. Springer, New York. Z.
[26] MASRY, E. 1996. Multivariate local poly nomial regression for time series: uniform strong consistency and rates. J. Time Ser. Anal. 17 571 599. Z. · Zbl 0876.62075 · doi:10.1111/j.1467-9892.1996.tb00294.x
[27] MASRY, E. and TJøSTHEIM, D. 1995. Nonparametric estimation and identification of nonlinear ARCH time series. Econometric Theory 11 258 289. Z. JSTOR: · Zbl 1401.62171 · doi:10.1017/S0266466600009166
[28] NEUMANN, M. H. 1995. Automatic bandwidth choice and confidence intervals in nonparametric regression. Ann. Statist. 23 1937 1959. Z. · Zbl 0856.62042 · doi:10.1214/aos/1034713641
[29] NEUMANN, M. H. 1997. On robustness of model-based bootstrap schemes in nonparametric time series analysis. Discussion Paper 88 97, SFB 373, Humboldt Univ., Berlin. Z.
[30] NEUMANN, M. H. 1998. Strong approximation of density estimators from weakly dependent observations by density estimators from independent observations. Ann. Statist. 26 To appear. Z. · Zbl 0930.62038 · doi:10.1214/aos/1024691367
[31] NEUMANN, M. H. and KREISS, J.-P. 1996. Bootstrap confidence bands for the autoregression function. Preprint 263, Weierstrass Institute, Berlin. Z.
[32] NEUMANN, M. H. and POLZEHL, J. 1995. Simultaneous bootstrap confidence bands in nonparametric regression. J. Nonparametr. Statist. To appear. Z. · Zbl 0913.62041 · doi:10.1080/10485259808832748
[33] NUSSBAUM, M. 1996. Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399 2430. Z. · Zbl 0867.62035 · doi:10.1214/aos/1032181160
[34] ROBINSON, P. M. 1983. Nonparametric estimators for time series. J. Time Ser. Anal. 4 185 207.Z. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x
[35] SAKHANENKO, A. I. 1991. On the accuracy of normal approximation in the invariance principle. Siberian Adv. Math. 1 58 91. Z. · Zbl 0845.60031
[36] SHORACK, G. R. and WELLNER, J. A. 1986. Empirical Processes with Applications to Statistics. Wiley, New York. Z. · Zbl 1170.62365
[37] SKOROKHOD, A. V. 1965. Studies in the Theory of Random Processes. Addison-Wesley, Reading, MA. Z. · Zbl 0146.37701
[38] SPOKOINY, V. G. 1996. Adaptive and spatially adaptive testing of a nonparametric hy pothesis. Math. Methods Statist. To appear. Z.
[39] STONE, C. J. 1977. Consistent nonparametric regression. Ann. Statist. 5 595 620. Z. · Zbl 0366.62051 · doi:10.1214/aos/1176343886
[40] SUN, J. and LOADER, C. R. 1994. Simultaneous confidence bands for linear regression and smoothing. Ann. Statist. 22 1328 1345. · Zbl 0817.62057 · doi:10.1214/aos/1176325631
[41] TSy BAKOV, A. B. 1986. Robust reconstruction of functions by the local approximation method. Problems Inform. Transmission 22 133 146. Z. · Zbl 0622.62047
[42] WU, C. F. J. 1986. Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist. 14 1261 1343. · Zbl 0618.62072 · doi:10.1214/aos/1176350142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.