Ivanov, Ivan G.; El-Sayed, Salah M. Properties of positive definite solutions of the equation \(X+A^*X^{-2}A=I\). (English) Zbl 0935.65041 Linear Algebra Appl. 279, No. 1-3, 303-316 (1998). Summary: We discuss some properties of a positive definite solution of the matrix equation \(X+ A^*X^{-2}A= I\). Two effective iterative methods for computing a positive definite solution of this equation are proposed. Necessary and sufficient conditions for the existence of a positive definite solution are derived. Numerical experiments are executed with these methods. Cited in 1 ReviewCited in 42 Documents MSC: 65F30 Other matrix algorithms (MSC2010) 65F10 Iterative numerical methods for linear systems 15A24 Matrix equations and identities Keywords:numerical experiments; matrix equation; positive definite solution; iterative method PDF BibTeX XML Cite \textit{I. G. Ivanov} and \textit{S. M. El-Sayed}, Linear Algebra Appl. 279, No. 1--3, 303--316 (1998; Zbl 0935.65041) Full Text: DOI OpenURL References: [1] Anderson, W.N.; Morley, T.D.; Trapp, G.E., Positive solution to \(X = A − Bx\^{}\{−1\} B∗\), Linear algebra appl., 134, 53-62, (1990) · Zbl 0702.15009 [2] Engwerda, J.C.; Ran Andre, C.M.; Rijkeboer, A.L., Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation \(X + A∗X\^{}\{−1\} A = Q\), Linear algebra appl., 186, 255-275, (1993) · Zbl 0778.15008 [3] Engwerda, J.C., On the existence of a positive definite solution of the matrix equation X + ATX−1A = I, Linear algebra appl., 194, 91-108, (1993) · Zbl 0798.15013 [4] Buzbee, B.L.; Golub, G.H.; Nielson, C.W., On direct methods for solving Poisson’s equations, SIAM J. numer. anal., 7, 627-656, (1970) · Zbl 0217.52902 [5] Housholder, A.S., The theory of matrices in numerical analysis, (1964), Blaisdell New York [6] Parodi, M., La localisation des valeurs caracteristiques des matrices et ses applications, (1959), Gauthier-Villars Paris · Zbl 0087.01602 [7] Petkov, M., On the matrix equations A0xm + A1xm−1 + … + am = 0, (A0λm + A1λm−1 + … + am)x = 0, Ann. sofia university kl. okhridski, 72, 159-164, (1978), (in Bulgarian) [8] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Oxford University Press London · Zbl 0258.65037 [9] Petkov, M., An iterative method for computing A, (), Sofia [10] Salah El-Sayed, M., The study on special matrices and numerical methods for special matrix equations, Ph.D. thesis, (1996), Sofia · Zbl 1034.65502 [11] Lancaster, P., Theory of matrices, (1969), Academic Press New York · Zbl 0186.05301 [12] Salah El-Sayed, M., Theorems for the existence and computing of positive definite solutions for two nonlinear matrix equations, () · Zbl 1054.65041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.