Symmetric ciphers based on two-dimensional chaotic maps. (English) Zbl 0935.94019

Summary: In this paper, methods are shown how to adapt invertible two-dimensional chaotic maps on a torus or on a square to create new symmetric block encryption schemes. A chaotic map is first generalized by introducing parameters and then discretized to a finite square lattice of points which represent pixels or some other data items. Although the discretized map is a permutation and thus cannot be chaotic, it shares certain properties with its continuous counterpart as long as the number of iterations remains small. The discretized map is further extended to three dimensions and composed with a simple diffusion mechanism. As a result, a symmetric block product encryption scheme is obtained. To encrypt an \(N\times N\) image, the ciphering map is iteratively applied to the image. The construction of the cipher and its security is explained with the two-dimensional Baker map. It is shown that the permutations induced by the Baker map behave as typical random permutations. Computer simulations indicate that the cipher has good diffusion properties with respect to the plain-text and the key. A nontraditional pseudo-random number generator based on the encryption scheme is described and studied. Examples of some other two-dimensional chaotic maps are given ard their suitability for secure encryption is discussed. The paper closes with a brief discussion of a possible relationship between discretized chaos and cryptosystems.


94A60 Cryptography
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N99 Applications of dynamical systems
Full Text: DOI


[1] DOI: 10.2307/2324899 · Zbl 0758.58019 · doi:10.2307/2324899
[2] Brassard G., Chap. 6 pp 79– (1988)
[3] DOI: 10.1126/science.275.5300.627 · doi:10.1126/science.275.5300.627
[4] DOI: 10.1142/S0218127496000023 · Zbl 0874.58038 · doi:10.1142/S0218127496000023
[5] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[6] Caroll T., Phys. Rev. 44 (4) pp 2374– (1991) · doi:10.1103/PhysRevA.44.2374
[7] DOI: 10.1142/S021812749200077X · Zbl 0873.58045 · doi:10.1142/S021812749200077X
[8] Caroll T., Physica 67 pp 126– (1993)
[9] DOI: 10.1103/PhysRevLett.71.65 · doi:10.1103/PhysRevLett.71.65
[10] DOI: 10.1016/0096-3003(94)00156-X · Zbl 0834.65057 · doi:10.1016/0096-3003(94)00156-X
[11] Fridrich J., J. Appl. Math. Comp. 80 pp 129– (1995)
[12] DOI: 10.1016/S0096-3003(96)00029-X · Zbl 0874.93064 · doi:10.1016/S0096-3003(96)00029-X
[13] DOI: 10.1142/S0218127492000823 · Zbl 0875.94134 · doi:10.1142/S0218127492000823
[14] DOI: 10.1080/0161-118991863745 · doi:10.1080/0161-118991863745
[15] Murali K., Phys. Rev. E48(3), R1624-R1626. (1993)
[16] DOI: 10.1109/12.559800 · doi:10.1109/12.559800
[17] DOI: 10.1142/S0218127492000562 · Zbl 0870.94011 · doi:10.1142/S0218127492000562
[18] Rannou F., Astron. Astrophys. 31 pp 289– (1974)
[19] DOI: 10.1002/j.1538-7305.1949.tb00928.x · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[20] DOI: 10.1080/0161-118991863934 · doi:10.1080/0161-118991863934
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.