Li, Hua-Chieh Fibonacci primitive roots and Wall’s question. (English) Zbl 0936.11011 Fibonacci Q. 37, No. 1, 77-84 (1999). Define \(g\) to be a Fibonacci primitive root \(\pmod m\) if \(g\) is a primitive root \(\pmod m\) such that \(g^2-g-1\equiv 0\pmod m\). Let \(k(m)\) be the period of the Fibonacci sequence \(\pmod m\), that is, the least positive integer such that \(F_{k(m)}\equiv 0\pmod m\), \(F_{k(m)+1}\equiv 1\pmod m\). The author’s main result states that if \(p\) is a prime such that \(k(p)\neq k(p^2)\), then the existence of a Fibonacci primitive root \(\pmod p\) implies the existence of a Fibonacci primitive root \(\pmod {p^n}\) for all \(n\geq 1\). Reviewer: N.Robbins (San Francisco) Cited in 2 Documents MSC: 11B39 Fibonacci and Lucas numbers and polynomials and generalizations 11A07 Congruences; primitive roots; residue systems 11B50 Sequences (mod \(m\)) Keywords:Fibonacci primitive root; Fibonacci sequence; period PDF BibTeX XML Cite \textit{H.-C. Li}, Fibonacci Q. 37, No. 1, 77--84 (1999; Zbl 0936.11011) OpenURL