# zbMATH — the first resource for mathematics

Homogenization of attractors for semilinear parabolic equations on manifolds with complicated microstructure. (English) Zbl 0936.35024
The authors investigate a family of parabolic equations: $\partial_t u^\varepsilon- \Delta_\varepsilon u^\varepsilon+ f(u^\varepsilon) =h^\varepsilon(x), \quad x\in M_\varepsilon,\;t>0,$ $\partial_n u^\varepsilon (x)= 0,\;x\in\partial M_\varepsilon,\;t>0,\;u^\varepsilon (x,0)= u^\varepsilon_0 (x),(1)_\varepsilon$ Here $$\varepsilon>0$$ is a small parameter which tends to zero, $$M_\varepsilon\subseteq\mathbb{R}^{n+1}$$ is a certain Riemannian manifold obtained from a fixed domain $$\Omega\subseteq\mathbb{R}^n$$ by a process of homogenization.
The intention of the paper is to show that for every $$\varepsilon>0$$, $$(1)_\varepsilon$$ admits a global attractor $$A_\varepsilon$$ in a suitable functional frame. Moreover there is a limiting equation $$(1)_0$$ of $$(1)_\varepsilon$$ which too admits a global attractor $$A_0$$ such that $$\lim A_\varepsilon=A_0$$ in some sense as $$\varepsilon\to 0$$.
More explicitely let $$\Omega \subseteq\mathbb{R}^n$$ be a smooth bounded domain. A somewhat simplified description of $$M_\varepsilon$$ is as follows. We consider $$\Omega$$ as part of $$\mathbb{R}^{n+1}$$, $$x_{n+1}=0$$. On every lattice point $$\varepsilon j\in\Omega$$, $$j\in\mathbb{Z}^n$$ we put a small sphere $$B_\varepsilon(j) \subseteq\mathbb{R}^{n+1}$$ (with center at $$\varepsilon j)$$ of small radius $$r_\varepsilon$$, all spheres congruent. Let $$\partial B^-_\varepsilon(j)$$ be the part of $$\partial B_\varepsilon(j)$$ in the halfspace $$x_{n+1}\leq 0$$. Now set $M_\varepsilon= \Bigl(\Omega \setminus\bigcup_j B_\varepsilon(j) \Bigr)\cup\bigcup_j \partial B^-_\varepsilon(j).$ On $$M_\varepsilon$$ one can introduce a metric tensor $$g^{\alpha \beta}_\varepsilon (x)$$ which is Euclidean on the part $$M_\varepsilon= \Omega\setminus \bigcup_j B_\varepsilon(j)$$. This metric turns $$M_\varepsilon$$ into a Riemannian manifold which gives rise to the Laplace-Beltrami operator $$\Delta_\varepsilon$$ which occurs in $$(1)_\varepsilon$$. The limiting equations mentioned above split into two parts $\partial_t u-\Delta u+\lambda\mu(u-v)+ f(u)=h_1(x),\;\partial_n u=0\text{ on }\partial \Omega,\;\partial_tv+ \lambda(v-u)+f(v)= h_2(x), (1)_0$ supplied by initial conditions. The precise way in which solutions $$u_\varepsilon$$ of $$(1)_\varepsilon$$ converge toward the solution pair $$u,v$$ of $$(1)_0$$ is somewhat involved; we refer to the paper for details. The same applies to the existence of attractors $$A_\varepsilon,A_0$$ of $$(1)_\varepsilon$$, $$(1)_0$$ respectively and the way in which convergence $$A_\varepsilon\to A_0$$, $$\varepsilon\to 0$$ takes place. Based on this functional frame, the authors proceed to establish a number of theorems. The first, Theorem 3.2, asserts the existence and uniqueness of weak solutions to (2). Theorem 3.2 allows the introduction of the notion of process $$U_f(t,\tau)$$, $$t\geq\tau$$ which describes the evolution of (2). The concepts of absorbing set and attractor are then formulated in terms of $$H(h)$$, $$T^p$$ and $$U_f(t,\tau)$$. The basic theorems now assert the existence of absorbing sets, and based on these, the existence of global attractors.

##### MSC:
 35B27 Homogenization in context of PDEs; PDEs in media with periodic structure 35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations 35B41 Attractors 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text:
##### References:
  Babin, A. V.; Vishik, M. J., Attractors of Evolution Equations (1992), Amsterdam: North-Holland, Amsterdam  L.Boutet de Monvel - E.Ya. Khruslov,Homogenization on Riemannian manifolds, BiBoS Preprint 560/93, Bielefeld (1993) (to appear in the Proceedings «Composite Media», Trieste, 1994). · Zbl 0909.35016  Chueshov, I. D., A problem on non-linear oscillations of shallow shell in a quasistatic formulation, Math. Notes, 47, 401-407 (1990) · Zbl 0721.73028  Chueshov, I. D., Global attractors for non-linear problems of mathematical physics, Russian Math. Surveys, 43, 3, 133-161 (1993) · Zbl 0805.58042  Chueshov, I. D., Quasistatic version of the system of von Karman equations, Matem. Physika, Analiz, Geometriya, 1, 1, 149-167 (1994) · Zbl 0833.73036  Ghidaglia, J.-M.; Marion, M.; Temam, R., Generalization of the Sobolev-Lieb-Thirring inequalities and applications of attractors, Diff. Integ. Eq., 1, 67-92 (1988)  J. K.Hale,Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc. Providence, (1988). · Zbl 0642.58013  Hale, J. K.; Raugel, G., Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71, 33-95 (1992) · Zbl 0840.35044  Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), New York: Springer, New York · Zbl 0456.35001  Kapitansky, L. V.; Kostin, I. N., Attractors of non-linear evolution equations and their approximations, Leningrad Math. J., 2, 97-117 (1991) · Zbl 0724.35049  Khruslov, E. Ya., Homogenized diffusion model in cracked-porous media, Dokl. Akad. Nauk SSSR, 309, 332-335 (1989)  Khruslov, E. Ya., Homogenized model of strongly inhomogeneous medium with memory, Uspeckhi Math. Nauk, 45, 1, 197-199 (1990)  E.Ya. Khruslov,Homogenized models of composite media, inComposite Media and Homogenized Theory (Eds. G. DalMaso, G. F.Dell’Antonio) Birkhauser (1991), pp. 159-182. · Zbl 0737.73009  E.Ya. Khruslov,Homogenized models of strongly inhomogeneous media, talk on Math. Congress Zurich (1994) (to be published).  Ladyzenskaya, O. A.; Solonnikov, V. A.; Uraltseva, N. N., Linear and quasilinear equations of parabolic type (1968), Providence: Amer. Math. Soc., Providence  Morita, J.; Jimbo, S., Ordinary differential equations on inertial manifolds for reaction-diffusion systems in a singularity perturbed domain with several thin channels, J. Dyn. Diff. Eqs., 4, 65-93 (1992) · Zbl 0760.35026  Temam, R., Infinite dimensional systems, Mechanics and Physics (1988), New York: Springer, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.