The Camassa Holm equation: Conserved quantities and the initial value problem. (English) Zbl 0936.35166

Summary: Using a Miura-Gardner-Kruskal type construction, we show that the Camassa-Holm equation has an infinite number of local conserved quantities. We explore the implications of these conserved quantities for global well-posedness.


35Q53 KdV equations (Korteweg-de Vries equations)
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI arXiv


[2] Camassa, R.; Holm, D. D., Phys. Rev. Lett., 71, 1661 (1993)
[3] Misiołek, G., J. Geom. Phys., 24, 203 (1998)
[7] Kruskal, M. D.; Miura, R. M.; Gardner, C. S., J. Math. Phys., 11, 952 (1970)
[8] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., J. Math. Phys., 9, 1204 (1968)
[9] Lax, P. D., Comm. Pure Appl. Math, 28, 141 (1975)
[10] Schiff, J., Physica D, 121, 24 (1998)
[12] Fuchssteiner, B., Physica D, 95, 229 (1996)
[13] Kingston, J. G.; Rogers, C., Phys. Lett. A, 92, 261 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.