Fisher, Michael; Schiff, Jeremy The Camassa Holm equation: Conserved quantities and the initial value problem. (English) Zbl 0936.35166 Phys. Lett., A 259, No. 5, 371-376 (1999). Summary: Using a Miura-Gardner-Kruskal type construction, we show that the Camassa-Holm equation has an infinite number of local conserved quantities. We explore the implications of these conserved quantities for global well-posedness. Cited in 45 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35A05 General existence and uniqueness theorems (PDE) (MSC2000) Keywords:Camassa-Holm equation; conserved quantities; global well-posedness PDF BibTeX XML Cite \textit{M. Fisher} and \textit{J. Schiff}, Phys. Lett., A 259, No. 5, 371--376 (1999; Zbl 0936.35166) Full Text: DOI arXiv References: [2] Camassa, R.; Holm, D. D., Phys. Rev. Lett., 71, 1661 (1993) [3] Misiołek, G., J. Geom. Phys., 24, 203 (1998) [7] Kruskal, M. D.; Miura, R. M.; Gardner, C. S., J. Math. Phys., 11, 952 (1970) [8] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., J. Math. Phys., 9, 1204 (1968) [9] Lax, P. D., Comm. Pure Appl. Math, 28, 141 (1975) [10] Schiff, J., Physica D, 121, 24 (1998) [12] Fuchssteiner, B., Physica D, 95, 229 (1996) [13] Kingston, J. G.; Rogers, C., Phys. Lett. A, 92, 261 (1982) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.