×

zbMATH — the first resource for mathematics

On a nonlinear geometrical inverse problem of Signorini type: Identifiability and stability. (English) Zbl 0936.35189
Of concern here are inverse problems, which consist of determining the shape of a part of the unknown boundary given the homogeneous Dirichlet condition on a part of the known boundary and the normal derivative (flux) over the remaining known part of the boundary. On the unknown part of the boundary a further condition of Signorini type is assumed, namely \(u\frac{\partial u}{\partial n} = 0\). The authors prove a uniqueness result i.e. two different admissible boundaries can not produce the same distribution for the field on a set of positive measure contained in the known part of the boundary. They also derive stability theorems using Holmgren’s theorem and Green’s theorem.

MSC:
35R30 Inverse problems for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
74M15 Contact in solid mechanics
31A25 Boundary value and inverse problems for harmonic functions in two dimensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sobolev Spaces, Academic press, New York, 1975.
[2] Alessandrini, Appl. Anal. 27 pp 153– (1988)
[3] Alessandrini, Bolletino UMI 7 (1989)
[4] and , ’Identification de frontières inaccessibles par une unique mesure de surface’, C. R. Acad. Sci. Paris. série 1, 316 (1993).
[5] Andrieux, Annales Maghrébines de l’Ingénieur 7 (1993)
[6] , and , ’On some inverse geometrical problems’ in: PDE Methods in Control and Shape Analysis ( and eds.), Marcel Dekker, New York, 1997.
[7] Bellout, Arch. Rat. Mech. Anal. 101 pp 143– (1988)
[8] Bellout, Trans. A. M. S. 322 pp 271– (1992)
[9] ’Sur quelques problèmes inverse géométriques’, Thesis, Ecole Nationale d’Ingénieus de Tunis, 1993.
[10] ’Etude d’un problème inverse géométrique avec conditions aux limites de type Signorini’, DEA de mathématiques Appliquées, ENIT, 1994.
[11] and , ’Sur un problème inverse géométrique avec conditions aux limites de type Signorini’, Actes du 5ème Colloque Maghrébin sur les Modèles Numériques de l’Ingénieur, Rabat, 1995.
[12] Friedman, Indiana Univ. Math. J. 38 pp 563– (1989)
[13] and , Analyse numérique des inéquations variationnelles, Dunod, Paris, 1976.
[14] Isakov, Comm. Pure Appl. Math. 41 pp 865– (1988)
[15] Isakov, Inverse problems 6 pp 311– (1990)
[16] Khodja, C. R. Acad. Sci. Paris. 312 pp 509– (1991)
[17] Khodja, Comm. PDE 17 pp 805– (1992)
[18] and ’Contact Problems in elasticity: a study of variational inequalities and finite element methods’, SIAM Studies Appl. Math., 1988.
[19] Kohn, Comm. Pure Appl. math. 38 pp 644– (1985)
[20] Kunish, SIAM J. Control Opt. 32 pp 1643– (1994)
[21] Quelques méthodes de résolution de problèmes aux limites non linéaries, Dunod, Paris, 1969.
[22] Mignot, J. Func. Anal. 22 pp 130– (1976)
[23] and , ’Quelques résultats sur le contrôle par un domaine géométrique’, Univ. Paris VI, 1974.
[24] Some Basic problems in Elasticity, Nordhoff, Dordrecht, 1953.
[25] Boundary Behaviour of Conformal Maps, Springer, Berlin 1992. · Zbl 0762.30001
[26] Roche, Control Cybernet. 25 pp 867– (1996)
[27] Simon, Num. Func., Anal. Opt. 2 pp 649– (1980)
[28] and , ’Dérivation par rapport au domaine dans les problèmes unilatéraux’, INRIA Research Report 132, 1982.
[29] and , Introduction to Shape Optimization; Shape Sensitivity Analysis, Springer, Berlin, 1992. · Zbl 0761.73003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.