On the Gaussian measure of the intersection. (English) Zbl 0936.60015

Summary: The Gaussian correlation conjecture states that for any two symmetric, convex sets in \(n\)-dimensional space and for any centered, Gaussian measure an that space, the measure of the intersection is greater than or equal to the product of the measures. We obtain several results which substantiate this conjecture. For example, in the standard Gaussian case, we show there is a positive constant, \(c\), such that the conjecture is true if the two sets are in the Euclidean ball of radius \(c\sqrt n\). Further we show that if for every \(n\) the conjecture is true when the sets are in the Euclidean ball of radius \(\sqrt n\), then it is true in general. Our most concrete result is that the conjecture is true if the two sets are (arbitrary) centered ellipsoids.


60E15 Inequalities; stochastic orderings
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
Full Text: DOI arXiv


[1] Ahlswede, R. and Daykin, D. E. (1978). An inequality for weight of two families of sets, their unions and intersections.Wahrsch. Verw. Gebiete 43 183-185. · Zbl 0357.04011 · doi:10.1007/BF00536201
[2] Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176. JSTOR: · Zbl 0066.37402 · doi:10.2307/2032333
[3] Borell, C. (1981). A Gaussian correlation inequality for certain bodies in Rn. Math. Ann. 256 569-573. · Zbl 0451.60018 · doi:10.1007/BF01450550
[4] Brascamp, H. J. and Lieb, E. H. (1976). On the extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 366-389. · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[5] Das Gupta, S., Eaton, M. L., Olkin, I., Perlman, M., Savage, L. J. and Sobel, M. (1972). Inequalities on the probability content of convex regions for elliptically contoured distributions. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 3 241-264. Univ. California Press, Berkeley. · Zbl 0253.60021
[6] Dunn, O. J. (1958). Estimation of the means of dependent variables. Ann. Math. Statist. 29 1095-1111. · Zbl 0092.36702 · doi:10.1214/aoms/1177706443
[7] Dunnett, C. W. and Sobel, M. (1955). Approximations to the probability integral and certain percentage points to a multivariate analogue of Student’s t-distribution. Biometrika 42 258-260. JSTOR: · Zbl 0064.38501 · doi:10.1093/biomet/42.1-2.258
[8] Gluskin, E. D. (1989). Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Math. USSR Sbornik 64 85-96. · Zbl 0668.52002 · doi:10.1070/SM1989v064n01ABEH003295
[9] Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Multivariate Anal. 10 467- 498. · Zbl 0469.60006 · doi:10.1016/0047-259X(80)90065-2
[10] Khatri, C. G. (1967). On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38 1853-1867. · Zbl 0155.27103 · doi:10.1214/aoms/1177698618
[11] Leindler, L. (1972). On a certain converse of Hölder’s inequality II. Acta. Sci. Math. Szeged 33 217-223. · Zbl 0245.26011
[12] Pitt, L. D. (1977). A Gaussian correlation inequality for symmetric convex sets. Ann. Probab. 5 470-474. · Zbl 0359.60018 · doi:10.1214/aop/1176995808
[13] Prékopa, A. (1973). On logarithmic concave measures and functions. Acta Sci. Math. Szeged 34 335-343. · Zbl 0264.90038
[14] Sidák,(1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc. 62 626-633. JSTOR: · Zbl 0158.17705 · doi:10.2307/2283989
[15] Sidák,(1968). On multivariate normal probabilities of rectangles: their dependence on correlations. Ann. Math. Statist. 39 1425-1434. · Zbl 0169.50102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.