×

On large deviations of Markov processes with discontinuous statistics. (English) Zbl 0936.60021

The authors establish a large deviations principle for a Markov random process in \(\mathbb{R}^d\) with \(d\) discontinuities in the transition mechanism along a hyperplane. The transition mechanism of the process is assumed to be continuous on one closed half-space, and also continuous on the complementary open half-space. The proof of the presented result relies on the work of V. M. Blinovskij and R. L. Dobrushin [in: The Dynkin Festschrift: Markov processes and their applications. Prog. Probab. 34, 1-59 (1994; Zbl 0819.60029)].

MSC:

60F10 Large deviations
60J99 Markov processes

Citations:

Zbl 0819.60029
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alany ali, M. and Hajek, B. (1998). On large deviations in load sharing networks. Ann. Appl. Probab. 8 67-97. · Zbl 0938.60097
[2] Azencott, R. and Ruget, G. (1977). Melanges d’équations differentialles et grands écarts a la loi des grand nombres. Z. Wahrsch. Verw. Gebiete 38 1-54. · Zbl 0372.60082
[3] Blinovskii, V. M. and Dobrushin, R. L. (1994). Process level large deviations for a class of piecewise homogeneous random walks. In The Dy nkin Festschrift: Markov Processes and Their Applications 1-59. Birkhäuser, Boston. · Zbl 0819.60029
[4] Dembo, A. and Zeitouni, O. (1992). Large Deviations Techniques and Applications. Jones and Bartlett, Boston. · Zbl 0793.60030
[5] Dinwoodie, I. H. and Zabell, S. L. (1992). Large deviations for exchangeable random vectors. Ann. Probab. 20 1147-1166. · Zbl 0760.60025
[6] Dupuis, P. and Ellis, R. S. (1992). Large deviations for Markov processes with discontinuous statistics II. Probab. Theory Related Fields 91 153-194. · Zbl 0746.60025
[7] Dupuis, P. and Ellis, R. S. (1995). The large deviation principle for a general class of queueing sy stems I. Trans. Amer. Math. Soc. 347 2689-2751. JSTOR: · Zbl 0869.60022
[8] Dupuis, P. and Ellis, R. S. (1996). A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York. · Zbl 0904.60001
[9] Dupuis, P., Ellis, R. S. and Weiss, A. (1991). Large deviations for Markov processes with discontinuous statistics I: general upper bounds. Ann. Probab. 19 1280-1297. · Zbl 0735.60027
[10] Ignaty uk, I. A., Maly shev, V. and Scherbakov, V. V. (1994). Boundary effects in large deviation problems. Russian Math. Survey s 49 41-99. · Zbl 0824.60022
[11] Nagot, I. (1995). Grandes déviations pour les processus d’apprentissage lent a statistiques discontinues sur une surface. Th ese de Docteur en Sciences, Université Paris XI Orsay, U.F.R. Scientifique d’Orsay.
[12] Rockafellar, R. T. (1970). Convex Analy sis. Princeton Univ. Press. · Zbl 0193.18401
[13] Shwartz, A. and Weiss, A. (1995). Large Deviations for Performance Analy sis, Queues, Communication and Computing. Chapman & Hall, London. · Zbl 0871.60021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.