Dabrowska, Dorota M. Smoothed Cox regression. (English) Zbl 0936.62046 Ann. Stat. 25, No. 4, 1510-1540 (1997). Summary: Nonparametric regression was shown by R. Beran [Nonparametric regression with randomly censored survival data. Tech. Rep. Univ. California, Berkeley (1981)] and I. W. McKeague and K. J. Utikal [Ann. Stat. 18, No. 3, 1172-1187 (1990; Zbl 0721.62087); Scand. J. Stat. 18, No. 3, 177-195 (1991; Zbl 0803.62038)] to provide a flexible method for analysis of censored failure times and more general counting processes models in the presence of covariates. We discuss application of kernel smoothing towards estimation in a generalized Cox regression model with baseline intensity dependent on a covariate. Under regularity conditions we show that estimates of the regression parameters are asymptotically normal at rate root-\(n\), and we also discuss estimation of the baseline cumulative hazard function and related parameters. Cited in 1 ReviewCited in 27 Documents MSC: 62G08 Nonparametric regression and quantile regression 62M09 Non-Markovian processes: estimation 62G20 Asymptotic properties of nonparametric inference Keywords:kernel estimation; counting processes; hazard functions estimation Citations:Zbl 0721.62087; Zbl 0803.62038 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer, New York. · Zbl 0769.62061 [2] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a large sample study. Ann. Statist. 10 1100-1120. · Zbl 0526.62026 · doi:10.1214/aos/1176345976 [3] Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical report, Univ. California, Berkeley. [4] Bickel, P. J. and Wichura, M. J. (1971). Convergence criteria for multiparameter stochastic processes with applications. Ann. Math. Statist. 42 1656-1670. · Zbl 0265.60011 · doi:10.1214/aoms/1177693164 [5] Borgan, Ø. (1984). Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data. Scand. J. Statist. 11 1-16. · Zbl 0546.62010 [6] Dabrowska, D. M. (1989). Uniform consistency of the kernel conditional Kaplan-Meier estimate. Ann. Statist. 17 1157-1167. · Zbl 0687.62035 · doi:10.1214/aos/1176347261 [7] Dellacherie, C. and Meyer, P. A. (1978). Probabilities and Potential. North-Holland, Amsterdam. · Zbl 0494.60001 [8] Fix, E. and Ney man, J. (1951). A simple stochastic model for recovery, relapse, death and loss of patients. Human Biology 23 205-241. [9] Gill, R. D. (1989). Nonand semiparametric maximum likelihood estimators and the van Mises method, I. Scand. J. Statist. 16 97-128. · Zbl 0688.62026 [10] Gill, R. D. and Johansen, S. (1990). A survey of product integration with a view towards application in survival analysis. Ann. Statist. 18 1501-1555. · Zbl 0718.60087 · doi:10.1214/aos/1176347865 [11] Gill, R. D., van der Laan, M. and Wellner, J. A. (1995). Inefficient estimators of the bivariate survival function in three models. Ann. Inst. H. Poincaré 31 545-597. · Zbl 0855.62024 [12] Hildebrandt, T. H. (1963). Introduction to the Theory of Integration. Academic Press, New York. · Zbl 0112.28302 [13] Jacod, J. (1975). Multivariate point processes: predictable projection, Radon-Nikody m derivatives, representation of martingales. Z. Wahrsch. Verw. Gebiete 31 235-254. · Zbl 0302.60032 · doi:10.1007/BF00536010 [14] Keiding, N. (1990). Statistical inference in the Lexis diagram. Philos. Trans. Roy. Soc. London Ser. A 332 487-509. · Zbl 0714.62102 · doi:10.1098/rsta.1990.0128 [15] McKeague, I. W., Nikabadze, A. M. and Sun, Y. (1995). An omnibus test for independence of a survival time from a covariate. Ann. Statist. 23 450-475. McKeague, I. W. and Utikal, K. J. (1990a). Inference for a nonlinear counting process regression model. Ann. Statist. 18 1172-1187. McKeague, I. W. and Utikal, K. J. (1990b). Identifying nonlinear covariate effects in semimartingale regression models. Probab. Theory Related Fields 87 1-25. · Zbl 0829.62054 · doi:10.1214/aos/1176324530 [16] McKeague, I. W. and Utikal, K. J. (1991). Goodness-of-fit tests for additive hazards and proportional hazards models. Scand. J. Statist. 18 177-195. · Zbl 0803.62038 [17] Nielsen, J. P. and Linton, O. B. (1995). Kernel estimation in a nonparametric marker dependent hazard model. Ann. Statist. 23 1735-1749. · Zbl 0847.62023 · doi:10.1214/aos/1176324321 [18] O’Sullivan, F. (1993). Nonparametric estimation in the Cox model. Ann. Statist. 21 124-145. · Zbl 0782.62046 · doi:10.1214/aos/1176349018 [19] Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. Ann. Statist. 11 453-466. · Zbl 0514.62050 · doi:10.1214/aos/1176346152 [20] Sasieni, P. (1992). Information bounds for the conditional hazard ratio in a nested family of regression models. J. Roy. Statist. Soc. Ser. B 54 617-635. JSTOR: · Zbl 0777.62101 [21] Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press. · Zbl 0207.13501 [22] Therneau, T. M., Grambsch, P. M. and Fleming, T. R. (1990). Martingale-based residuals for survival models. Biometrika 77 147-160. JSTOR: · Zbl 0692.62082 · doi:10.1093/biomet/77.1.147 [23] Thomas, D. C. (1983). Nonparametric estimation and tests for fit for dose response relations. Biometrics 39 263-268. [24] Young, W. H. (1917). On multiple integration by parts and the second theorem of the mean. Proc. London Math. Soc. 2 16 273-293. · JFM 46.0389.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.