zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cryptography with chaos. (English) Zbl 0936.94013
Summary: It is possible to encrypt a message (a text composed by some alphabet) using the ergodic property of the simple low-dimensional and chaotic logistic equation. The basic idea is to encrypt each character of the message as the integer number of iterations performed in the logistic equation, in order to transfer the trajectory from an initial condition towards an $\varepsilon$-interval inside the logistic chaotic attractor.

37D45Strange attractors, chaotic dynamics
37N99Applications of dynamical systems
Full Text: DOI
[1] Li, T. Y.; Yorke, J. A.: Amer. math. Monthly. 82, 985 (1975)
[2] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 64, 821 (1990)
[3] Hayes, S.; Grebogi, C.; Ott, E.; Mark, A.: Phys. rev. Lett.. 73, 1781 (1994)
[4] Schweizer, J.; Kennedy, M. P.: Phys. rev. E. 52, 4865 (1995)
[5] Gligoroski, D.; Dimovski, D.; Kocarev, L.; Urumov, V.; Chua, L. O.: Int. J. Bifurcation chaos. 6, 2119 (1996)
[6] Menezes, A. J.; Van Oorschot, P. C.; Vanstone, S. A.: Handbook of appl. Cryptography. (1996) · Zbl 0868.94001
[7] Ott, E.: Chaos in dynamical systems. (1993) · Zbl 0792.58014