Geng, Xianguo; Cao, Cewen Quasi-periodic solutions of the \(2+1\) dimensional modified Korteweg-de Vries equation. (English) Zbl 0937.35155 Phys. Lett., A 261, No. 5-6, 289-296 (1999). Summary: A new \(2 + 1\) dimensional modified Korteweg-de Vries equation is proposed and decomposed into the first two members of the well-known Kaup-Newell hierarchy, which are reduced further into integrable ordinary differential equations in the invariant set produced by the stationary Kaup-Newell equation. The Abel-Jacobi coordinates are introduced to straighten out the flows, from which quasi-periodic solutions of the \(2 + 1\) dimensional modified Korteweg-de Vries equation are obtained in terms of the Riemann theta functions. Cited in 9 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35B10 Periodic solutions to PDEs 37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions Keywords:modified Korteweg-de Vries equation; Kaup-Newell hierarchy; quasi-periodic solutions; Riemann theta functions PDF BibTeX XML Cite \textit{X. Geng} and \textit{C. Cao}, Phys. Lett., A 261, No. 5--6, 289--296 (1999; Zbl 0937.35155) Full Text: DOI References: [2] Cao, C. W., Sci. China A, 33, 528 (1990) [3] Cao, C. W.; Geng, X. G., J. Phys. A: Math. Gen., 23, 4117 (1990) [4] Antonowicz, M.; Rauch-Wojciechowski, S., J. Phys. A: Math. Gen., 24, 5043 (1991) [5] Antonowicz, M.; Rauch-Wojciechowski, S., J. Math. Phys., 33, 2115 (1992) [6] Konopelchenko, B.; Dubrovsky, V., Phys. Lett., 102A, 45 (1984) [7] Konopelchenko, B.; Strampp, W., Phys. Lett. A, 157, 17 (1991) [8] Konopelchenko, B.; Strampp, W., J. Phys. A: Math. Gen., 25, 4399 (1992) [9] Cheng, Y.; Li, Y. S., Phys. Lett. A, 157, 22 (1991) [10] Cheng, Y.; Li, Y. S., J. Phys. A: Math. Gen., 25, 419 (1992) [11] Kaup, D. J.; Newell, A. C., J. Math. Phys., 19, 799 (1978) [16] Date, E., Prog. Theor. Phys., 59, 265 (1978) [17] Tracy, E. R.; Chen, H. H.; Lee, Y. C., Phys. Rev. Lett., 53, 218 (1984) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.