zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The construction of special solutions to partial differential equations. (English) Zbl 0937.35501
Almost all the methods devised to date for constructing particular solutions to a partial differential equation can be viewed as manifestations of a single unifying method characterized by the appending of suitable `side conditions’ to the equation, and solving the resulting overdetermined system of partial differential equations. These side conditions can also be regarded as specifying the invariance of the particular solutions under some generalized groups of transformations.

35A30Geometric theory for PDE, characteristics, transformations
22E99Lie groups
58J70Invariance and symmetry properties
Full Text: DOI
[1] Ovsiannikov, L. V.: Group analysis of differential equations. (1982) · Zbl 0485.58002
[2] Lie, S.: Gesammelte abhandlungen. 4, 320-384 (1929) · Zbl 55.0016.06
[3] Bluman, G. W.; Cole, J. D.: J. math. Mech.. 18, 1025 (1969)
[4] P.J. Olver and P. Rosenau, On the ”non-classical method” for group-invarian solutions of differential equations, preprint.
[5] Kalnins, E. G.; Miller, W.: Proc. IUTAM-ISIMM symp. On modern developments in analytic mechanics. 511-533 (1982)
[6] Kalnins, E. G.; Miller, W.: J. math. Phys.. 26, 1560 (1985)
[7] Bluman, G. W.; Cole, J. D.: Similarity methods for differential equations. Appl. math. Sci. 13 (1974) · Zbl 0292.35001
[8] Anderson, R. L.; Ibragimov, N. H.: Lie-Bäcklund transformations in applications. SIAM stud. Appl. math. 1 (1979) · Zbl 0447.58001
[9] Scott, D.: Am. math. Monthly. 92, 422 (1985)
[10] Rosenau, P.; Rubin, M. B.: Phys. rev.. 31, 3480 (1985)
[11] Rosenau, P.; Rubin, M. B.: Oxford university lecture notes. (1980)