Unpredictable paths and percolation. (English) Zbl 0937.60070

Summary: We construct a nearest-neighbor process \(\{S_n\}\) on \({\mathbf Z}\) that is less predictable than simple random walk, in the sense that given the process until time \(n\), the conditional probability that \(S_{n+k}=x\) is uniformly bounded by \(Ck^{-\alpha}\) for some \(\alpha>1/2\). From this process, we obtain a probability measure \(\mu\) on oriented paths in \({\mathbf Z}^3\) such that the number of intersections of two paths, chosen independently according to \(\mu\), has an exponential tail. (For \(d\geq 4\), the uniform measure on oriented paths from the origin in \({\mathbf Z}^d\) has this property.) We show that on any graph where such a measure on paths exists, oriented percolation clusters are transient if the retention parameter \(p\) is close enough to 1. This yields an extension of a theorem of G. R. Grimmet, H. Kesten and Y. Zhang [Probab. Theory Relat. Fields 96, No. 1, 33-44 (1993; Zbl 0791.60095)], who proved that supercritical percolation clusters in \({\mathbf Z}^d\) are transient for all \(d\geq 3\).


60J45 Probabilistic potential theory
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60J65 Brownian motion
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G50 Sums of independent random variables; random walks


Zbl 0791.60095
Full Text: DOI arXiv


[1] ANTAL, P. and PISZTORA, A. 1996. On the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 24 1036 1048. · Zbl 0871.60089
[2] ATHREYA, K. and NEY, P. 1972. Branching Processes. Springer, New York. · Zbl 0259.60002
[3] COX, T. and DURRETT, R. 1983. Oriented percolation in dimensions d 4; bounds and asymptotic formulas. Math. Proc. Cambridge Philos. Soc. 93 151 162. · Zbl 0505.60017
[4] DOYLE, P. G. and SNELL, E. J. 1984. Random Walks and Electrical Networks. Math. Assoc. Amer., Washington, D.C. · Zbl 0583.60065
[5] GRIMMETT, G. R. KESTEN, H. and ZHANG, Y. 1993. Random walk on the infinite cluster of the percolation model. Probab. Theory Related Fields 96 33 44. · Zbl 0791.60095
[6] GRIMMETT, G. R. and MARSTRAND, J. M. 1990. The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 439 457. JSTOR: · Zbl 0711.60100
[7] HAGGSTROM, O. MOSSEL, E. 1998. Nearest-neighbor walks with low predictability profile and \" \" percolation in 2 dimensions. Ann. Probab. 26 1212 1231. · Zbl 0937.60071
[8] HIEMER, P. 1998. Dynamical renormalisation in oriented percolation.
[9] HOFFMAN, C. 1998. Unpredictable nearest neighbor processes. · Zbl 0937.60023
[10] KESTEN, H. and STIGUM, B. P. 1966. Additional limit theorems for indecomposable multidimensional Galton Watson processes. Ann. Math. Statist. 37 1463 1481. · Zbl 0203.17402
[11] KESTEN, H. and ZHANG, Y. 1990. The probability of a large finite cluster in supercritical Bernoulli percolation. Ann. Probab. 18 537 555. · Zbl 0705.60092
[12] LAWLER, G. 1991. Intersections of Random Walks. Birkhauser, Boston. \" · Zbl 1228.60004
[13] LEVIN, D. and PERES, Y. 1998. Energy and cutsets in infinite percolation clusters. In Proceedings of the Cortona Workshop on Random Walks and Discrete Potential TheoryM. Picardello and W. Woess eds.. To appear. Z. · Zbl 0957.60097
[14] LIGGETT, T. M. SCHONMANN, R. H. and STACEY, A. M. 1996. Domination by product measures. Ann. Probab. 24 1711 1726. · Zbl 0878.60061
[15] LYONS, R. 1990. Random walks and percolation on trees. Ann. Probab. 18 931 958. · Zbl 0714.60089
[16] LYONS, R. 1995. Random walks and the growth of groups. C. R. Acad. Sci. Paris 320 1361 1366. · Zbl 0831.60079
[17] MOORE, T. and SNELL, J. L. 1979. A branching process showing a phase transition. J. Appl. Probab. 16 252 260. JSTOR: · Zbl 0421.60052
[18] PEMANTLE, R. and PERES, Y. 1996. On which graphs are all random walks in random environments transient? In Random Discrete Structures D. Aldous and R. Pemantle, eds. 207 211. Springer, New York. · Zbl 0846.60095
[19] PISZTORA, A. 1996. Surface order large deviation for Ising, Potts and percolation models. Probab. Theory Related Fields 104 427 466. · Zbl 0842.60022
[20] SOARDI, P. M. 1994. Potential Theory on Infinite Networks. Springer, Berlin. · Zbl 0818.31001
[21] MADISON, WISCONSIN 53706 E-MAIL: pemantle@math.wisc.edu BERKELEY, CALIFORNIA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.