Pitman, Jim; Yor, Marc Random Brownian scaling identities and splicing of Bessel processes. (English) Zbl 0937.60079 Ann. Probab. 26, No. 4, 1683-1702 (1998). Summary: An identity in distribution due to F. B. Knight [Astérisque 157/158, 233-247 (1988; Zbl 0665.60072)] for Brownian motion is extended in two different ways: first by replacing the supremum of a reflecting Brownian motion by the range of an unreflected Brownian motion and second by replacing the reflecting Brownian motion by a recurrent Bessel process. Both extensions are explained in terms of random Brownian scaling transformations and Brownian excursions. The first extension is related to two different constructions of Itô’s law of Brownian excursions, due to Williams and Bismut, each involving back-to-back splicing of fragments of two independent three-dimensional Bessel processes. Generalizations of both splicing constructions are described, which involve Bessel processes and Bessel bridges of arbitrary positive real dimension. Cited in 4 Documents MSC: 60J65 Brownian motion 60G18 Self-similar stochastic processes 60J60 Diffusion processes Keywords:Brownian bridge; Brownian excursion; Brownian scaling; path transformation; Williams’ decomposition; local time; Bessel process; range process Citations:Zbl 0665.60072 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Biane, P. (1986). Relations entre pont et excursion du mouvement Brownien réel. Ann. Inst. H. Poincaré 22 1-7. · Zbl 0596.60079 [2] Biane, P. (1988). Sur un calcul de F. Knight. Séminaire de Probabilités XXII Lecture Notes in Math. 1321. 190-197. Springer, Berlin. · Zbl 0654.60061 [3] Biane, P., Le Gall, J. F. and Yor, M. (1987). Un processus qui ressemble au pont brownien. Séminaire de Probabilités XXI Lecture Notes in Math. 1247 270-275. Springer, Berlin. · Zbl 0621.60086 [4] Biane, P. and Yor, M. (1987). Valeurs principales associées aux temps locaux Browniens. Bull. Sci. Math. 111 23-101. · Zbl 0619.60072 [5] Bismut, J.-M. (1985). Last exit decompositions and regularity at the boundary of transition probabilities.Wahrsch. Verw. Gebiete. 69 65-98. · Zbl 0551.60077 · doi:10.1007/BF00532586 [6] Carmona, P., Petit, F. and Yor, M. (1994). Some extensions of the arc sine law as partial consequences of the scaling property of Brownian motion. Probab. Theory Related Fields. 100 1-29. · Zbl 0808.60066 · doi:10.1007/BF01204951 [7] Fitzsimmons, P., Pitman, J. and Yor, M. (1993). Markovian Bridges: Construction, Palm Interpretation, and Splicing. (E. Çinlar, K. Chung and M. Sharpe, eds.) 101-134. Birkhäuser, Boston. · Zbl 0844.60054 [8] Getoor, R. K. (1979). The Brownian escape process. Ann. Probab. 7 864-867. · Zbl 0416.60086 · doi:10.1214/aop/1176994945 [9] Hsu, P. and March, P. (1988). Brownian excursions from extremes. Séminaire de Probabilités XXII. Lecture Notes in Math. 1321 190-197. Springer, Berlin. · Zbl 0643.60061 [10] Imhof, J. P. (1992). A construction of the Brownian path from BES3 pieces. Stochastic Process. Appl. 43 345-353. · Zbl 0762.60071 · doi:10.1016/0304-4149(92)90067-Z [11] It o, K. (1971). Poisson point processes attached to Markov processes. Proc. Sixth Berkley Symp. Math. Statist. Probab. 3 225-240. Univ. California Press, Berkeley. [12] Jeanblanc, M., Pitman, J. and Yor, M. (1997). The Feynman-Kac formula and decomposition of Brownian paths. Comput. Appl. Math. 16 27-52. · Zbl 0877.60027 [13] Kent, J. (1978). Some probabilistic properties of Bessel functions. Ann. Probab. 6 760-770. · Zbl 0402.60080 · doi:10.1214/aop/1176995427 [14] Knight, F. B. (1988). Inverse local times, positive sojourns, and maxima for Brownian motion. Colloque Paul Lévy sur les Processus Stochastiques. Asterisque 157-158 233-247. · Zbl 0665.60072 [15] Molchanov, S. A. and Ostrovski, E. (1969). Symmetric stable processes as traces of degenerate diffusion processes. Theory Probab. Appl. 14 128-131. · Zbl 0281.60091 · doi:10.1137/1114012 [16] Pitman, J. (1986). Stationary excursions. Séminaire de Probabilités XXI. Lecture Notes in Math. 1247 289-302. Springer, Berlin. · Zbl 0619.60040 [17] Pitman, J. (1996). Cyclically stationary Brownian local time processes. Probab. Theory Related Fields 106 299-329. · Zbl 0857.60074 · doi:10.1007/s004400050066 [18] Pitman, J. and Yor, M. (1982). A decomposition of Bessel bridges.Wahrsch. Verw. Gebiete 59 425-457. · Zbl 0484.60062 · doi:10.1007/BF00532802 [19] Pitman, J. and Yor, M. (1992). Arcsine laws and interval partitions derived from a stable subordinator. Proc. London Math. Soc. 3 65 326-356. · Zbl 0769.60014 · doi:10.1112/plms/s3-65.2.326 [20] Pitman, J. and Yor, M. (1993). Dilatations d’espace-temps, réarrangements des trajectoires browniennes, et quelques extensions d’une identité de Knight. C.R. Acad. Sci. Paris Ser. I Math. 316 723-726. · Zbl 0789.60059 [21] Pitman, J. and Yor, M. (1996). Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In It o’s Stochastic Calculus and Probability Theory (N. Ikeda, S. Watanabe, M. Fukushima and H. Kunita, eds.) 293-310. Springer, New York. · Zbl 0877.60053 [22] Pitman, J. and Yor, M. (1997). On the relative lengths of excursions derived from a stable subordinator. Séminaire de Probabilités XXXI Lecture Notes in Math. 1655 287-305. Springer, Berlin. · Zbl 0884.60072 [23] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855-900. · Zbl 0880.60076 · doi:10.1214/aop/1024404422 [24] Pitman, J. and Yor, M. (1998). Ranked functionals of Brownian excursions. C.R. Acad. Sci. Paris Ser. I Math. 326 93-97. · Zbl 0924.60073 · doi:10.1016/S0764-4442(97)82719-X [25] Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion, 2nd ed. Springer, Berlin. · Zbl 0804.60001 [26] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes and Martingales II: It o Calculus. Wiley, New York. · Zbl 0977.60005 [27] Shiga, T. and Watanabe, S. (1973). Bessel diffusions as a one-parameter family of diffusion processes.Wahrsch. Verw. Gebiete 27 37-46. · Zbl 0327.60047 · doi:10.1007/BF00736006 [28] Vallois, P. (1991). Sur la loi conjointe du maximum et de l’inverse du temps local du mouvement brownien: applications a un théor eme de Knight. Stochastics Stochastics Rep. 35 175-186. · Zbl 0738.60075 [29] Vallois, P. (1995). Decomposing the Brownian path via the range process. Stochastic Process. Appl. 55 211-226. · Zbl 0820.60063 · doi:10.1016/0304-4149(94)00044-T [30] Vervaat, W. (1979). A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7 143-149. · Zbl 0392.60058 · doi:10.1214/aop/1176995155 [31] Wilks, S. (1962). Mathematical Statistics. Wiley, New York. · Zbl 0173.45805 [32] Williams, D. (1970). Decomposing the Brownian path. Bull. Amer. Math. Soc. 76 871-873. · Zbl 0233.60066 · doi:10.1090/S0002-9904-1970-12591-5 [33] Williams, D. (1974). Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. 3 28 738-768. · Zbl 0326.60093 · doi:10.1112/plms/s3-28.4.738 [34] Williams, D. (1979). Diffusions, Markov Processes, and Martingales I: Foundations. Wiley, New York. · Zbl 0402.60003 [35] Williams, D. (1990). Brownian motion and the Riemann zeta-function. In Disorder in Physical Systems (G. R. Grimmett and D. J. A. Welsh, eds.) 361-372. Clarendon Press, Oxford. · Zbl 0744.60100 [36] Yor, M. (1992). Some Aspects of Brownian Motion, Part I: Some Special Functionals. Birkhäuser, Basil. · Zbl 0779.60070 [37] Yor, M. (1995). Random Brownian scaling and some absolute continuity relationships. In Seminar on Stochastic Analysis, Random Fields and Applications (E. Bolthausen, M. Dozzi, and F. Russo, eds.) 243-252. Birkhäuser, Boston. · Zbl 0827.60010 [38] Yor, M. (1997). Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems. Birkhäuser, Basil. · Zbl 0880.60082 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.