×

A new proof that for the contact process on homogeneous trees local survival implies complete convergence. (English) Zbl 0937.60094

Summary: We provide a new proof, substantially simpler than Y. Zhang’s original one [ibid. 24, No. 3, 1408-1443 (1996; Zbl 0876.60092)] that for the contact process on homogeneous trees, local survival implies complete convergence.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory

Citations:

Zbl 0876.60092
Full Text: DOI

References:

[1] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462-1482. · Zbl 0718.60109 · doi:10.1214/aop/1176990627
[2] Bezuidenhout, C. and Grimmett, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 984-1009. · Zbl 0743.60107 · doi:10.1214/aop/1176990332
[3] Durrett, R. (1996). Probability: Theory and Examples, 2nd ed. Duxbury Press,. · Zbl 0709.60002
[4] Griffeath, D. (1978). Limit theorems for non-ergodic set-valued Markov processes. Ann. Probab. 6 379-387. · Zbl 0378.60105 · doi:10.1214/aop/1176995524
[5] Lalley, S. and Sellke, T. (1996). Limit set of a weakly supercritical contact process on a homogeneous tree. · Zbl 0937.60093 · doi:10.1214/aop/1022855646
[6] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[7] Liggett, T. M. (1996). Branching random walks and contact processes on homogeneous trees. Probab. Theory Related Fields 106 495-519. · Zbl 0867.60092 · doi:10.1007/s004400050073
[8] Liggett, T. M. (1997). Stochastic models of interacting systems. Ann. Probab. 25 1-29. · Zbl 0873.60072 · doi:10.1214/aop/1024404276
[9] Madras, N. and Schinazi, R. B. (1992). Branching random walks on trees. Stochastic Process. Appl. 42 255-267. · Zbl 0763.60042 · doi:10.1016/0304-4149(92)90038-R
[10] Morrow, G. J., Schinazi, R. B. and Zhang, Y. (1994). The critical contact process on a homogeneous tree. J. Appl. Probab. 31 250-255. JSTOR: · Zbl 0798.60091 · doi:10.2307/3215251
[11] Pemantle, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116. · Zbl 0762.60098 · doi:10.1214/aop/1176989541
[12] Salzano, M. and Schonmann, R. H. (1997). The second lowest extremal invariant measure of the contact process. Ann. Probab. 25 1846-1871. · Zbl 0903.60085 · doi:10.1214/aop/1023481114
[13] Zhang, Y. (1996). The complete convergence theorem of the contact process on trees. Ann. Probab. 24 1408-1443. · Zbl 0876.60092 · doi:10.1214/aop/1065725187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.