Lyapounov exponents and quenched large diviations for multidimensional random walk in random environment. (English) Zbl 0937.60095

Summary: Assign to the lattice sizes \(z\in\mathbb{Z}^d\) i.i.d. random \(2d\)-dimensional vectors \((\omega(z,z+e))_{|e|=1}\) whose entries take values in the open unit interval and add up to one. Given a realization \(\omega\) of this environment, let \((X_n)_{n\geq 0}\) be a Markov chain on \(\mathbb{Z}^d\) which, when at \(z\), moves one step to its neighbor \(z+e\) with transition probability \(\omega(z,z+e)\). We derive a large deviation principle for \(X_n/n\) by means of a result similar to the shape theorem of first-passage percolation and related models. This result produces certain constants that are the analogue of the Lyapunov exponents known from Brownian motion in Poissonian potential or random walk in random potential. We follow a strategy similar to Sznitman.


60K37 Processes in random environments
60F10 Large deviations
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60G50 Sums of independent random variables; random walks
Full Text: DOI


[1] DEMBO, A., PERES, Y. and ZEITOUNI, O. 1996. Tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys. 181 667 683. · Zbl 0868.60058
[2] DEMBO, A. and ZEITOUNI, O. 1993. Large Deviations Techniques. Jones and Bartlett, Boston. · Zbl 0793.60030
[3] FREIDLIN, M. 1985. Functional Integration and Partial Differential Equations. Princeton Univ. Press. · Zbl 0568.60057
[4] GANTERT, N. and ZEITOUNI, O. 1998. Quenched sub-exponential tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys. 194 177 190. · Zbl 0982.60037
[5] GREVEN, A. and DEN HOLLANDER, F. 1994. Large deviations for a random walk in random environment. Ann. Probab. 22 1381 1428. · Zbl 0820.60054
[6] HUGHES, B. D. 1996. Random Walks and Random Environments 2. Clarendon Press, Oxford. · Zbl 0925.60076
[7] KALIKOW, S. A. 1981. Generalized random walk in a random environment. Ann. Probab. 9 753 768. · Zbl 0545.60065
[8] KESTEN, H. 1986. Aspects of first passage percolation. Ecole d’ete de Probabilites de St. \' \' \' Flour. Lecture Notes in Math. 1180 125 264. Springer, Berlin. · Zbl 0602.60098
[9] KESTEN, H. 1993. On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 296 338. · Zbl 0783.60103
[10] LEE, T.-Y. and TORCASO, F. 1998. Wave propagation in a lattice KPP equation in random media. Ann. Probab. 26 1179 1197. · Zbl 0937.60074
[11] LIGGETT, T. 1985. Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[12] LORENTZEN, L. and WAADELAND, H. 1992. Continued Fractions with Applications. NorthHolland, Amsterdam. · Zbl 0782.40001
[13] PETROV, V. V. 1995. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Clarendon Press, Oxford. · Zbl 0826.60001
[14] PISZTORA, A. and POVEL, T. 1997. Large deviation principle for random walk in a quenched random environment in the low speed regime. Unpublished manuscript. · Zbl 0964.60056
[15] PISZTORA, A., POVEL, T. and ZEITOUNI, O. 1997. Precise large deviation estimates for one-dimensional random walk in random environment. Probab. Theory Related Fields. · Zbl 0922.60059
[16] REVESZ, P. 1990. Random Walk in Random and Non-Random Environments. World \' Ścientific, Singapore. · Zbl 0733.60091
[17] SOLOMON, F. 1975. Random walks in random environment. Ann. Probab. 3 1 31. · Zbl 0305.60029
[18] SZNITMAN, A. S. 1994. Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential. Comm. Pure Appl. Math. 47 1655 1688. · Zbl 0814.60022
[19] SZNITMAN, A. S. 1996. Distance fluctuations and Lyapounov exponents. Ann. Probab. 24 1507 1530. · Zbl 0871.60088
[20] SZNITMAN, A. S. 1998. Brownian Motion, Obstacles and Random Media. Springer, Berlin. · Zbl 0973.60003
[21] ZERNER, M. P. W. 1998. Directional decay of the Green’s function for a random nonnegative potential on d. Ann. Appl. Probab. 8 246 280. · Zbl 0938.60098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.