×

zbMATH — the first resource for mathematics

Bound kink states in inhomogeneous nonlinear media. (English. Russian original) Zbl 0937.82053
Theor. Math. Phys. 107, No. 1, 511-522 (1996); translation from Teor. Mat. Fiz. 107, No. 1, 115-128 (1996).
Summary: The equation \(\varphi_t= \varepsilon^2 \Delta\varphi+ H^2(x,y)\sin \varphi\) is considered, which has some applications in the physics of liquid crystals. The kinetics of the formation of kinks and their motions are studied, the relaxation times are calculated, the possibility of the formation of bound kink states is revealed, and the parameters of these states are calculated for small values of \(\varepsilon\).
MSC:
82D25 Statistical mechanical studies of crystals
82C21 Dynamic continuum models (systems of particles, etc.) in time-dependent statistical mechanics
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Allen and J. Cahn,Acta Metallurgica,27, 1084 (1979). · doi:10.1016/0001-6160(79)90196-2
[2] J. W. Cahn and J. H. Hilliard,J. Chem. Phys.,28, 258 (1958). · doi:10.1063/1.1744102
[3] N. C. Owen, J. Rubinstein, and P. Sternberg,Proc. R. Soc. London,A429, 505 (1990).
[4] P. Sternberg,Rocky Mountain J. Math.,21, 799 (1991). · Zbl 0760.49008 · doi:10.1216/rmjm/1181072968
[5] P. C. Fife,Mathematical Aspects of Reacting and Diffusing Systems, Springer, Berlin (1979). · Zbl 0403.92004
[6] D. Henry,Geometric Theory of Semilinear Parabolic Equations (Lecture Notes in Mathematics), Vol. 840, Springer. Berlin-Heidelberg-New York (1981). · Zbl 0456.35001
[7] G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium Systems, Wiley, New York-London-Sidney-Toronto (1977). · Zbl 0363.93005
[8] I. A. Molotkov and S. A. Vakulenko,Lumped Nonlinear Waves [in Russian], Leningrad Univ. Press, Leningrad (1988). · Zbl 1268.78018
[9] A. V. Babin and M. I. Vishik,Attractors of Evolution Equations [in Russian], Nauka, Moscow (1989). · Zbl 0804.58003
[10] O. A. Ladyzhenskaya,Usp. Mat. Nauk,42, No. 6, 25 (1987).
[11] I. D. Chueshov,Usp. Mat. Nauk,48, No. 3, 135 (1993).
[12] G. E. Volovik and V. P. Mineev,Pis’ma Zh. Eksp. Teor. Fiz.,23, 647 (1976).
[13] G. E. Volovik and V. P. Mineev,Pis’ma Zh. Eksp. Teor. Fiz.,24, 605 (1976).
[14] K. A. Volosov, V. P. Maslov, and V. G. Danilov,Mathematical Simulation of Production Processes for VLSI [in Russian], Nauka, Moscow (1984).
[15] V. P. Maslov and G. E. Omel’yanov,Usp. Mat. Nauk,36, No. 3 (1981).
[16] V. G. Danilov,Mat. Zametki,50, No. 3, 77 (1991).
[17] P. De Mottoni and P. Schatzman,Compt. Rend. Acad. Sci. Paris, Ser I Math.,309, 453 (1989).
[18] J. Rubinstein, J. Keller, and P. Sternberg,SIAM J. Appl. Math.,49, 116 (1989). · Zbl 0701.35012 · doi:10.1137/0149007
[19] R. V. Kohn and L. Bronsard,J. Diff. Eq.,90, 211 (1991). · Zbl 0735.35072 · doi:10.1016/0022-0396(91)90147-2
[20] P. N. Brusov and V. N. Popov,Superconductivity and Collective Properties of Quantum Liquids [in Russian], Nauka, Moscow (1988).
[21] P. G. de Gennes,The Physics of Liquid Crystals, Clarendon Press, Oxford (1974). · Zbl 0295.76005
[22] E. L. Aero and A. N. Bulygin,Fiz. Tverd. Tela,13, 1701 (1971).
[23] E. L. Aero,Opt. Spektr.,65, 342 (1988).
[24] E. L. Aero and A. V. Zakharov, in:Modern Problems in Mathematics (Complex and Special Problems Mechanics), Vol. 3, VINITI (1988), p. 163.
[25] E. De Giorgi,Boll. Un. Mat. Ital.,14A, No. 5, 213 (1977).
[26] L. Modica,Arch. Rat. Mech. Anal.,98, 123 (1987). · Zbl 0616.76004 · doi:10.1007/BF00251230
[27] L. Modica,Ann. Inst. H. Poincaré. L’Analyse Nonlinéaire,5, 453 (1987).
[28] M. Jolly,J. Diff. Equat.,78, 220 (1989). · Zbl 0691.35049 · doi:10.1016/0022-0396(89)90064-8
[29] M. V. Babich,Algebra Anal.,2, No. 3, 63 (1990).
[30] M. V. Babich,Algebra Anal.,3, No. 1, 57 (1991).
[31] B. A. Dubrovin, S. P. Novokov, and A. T. Fomenko,Modern Geometry [in Russian], Nauka, Moscow (1979).
[32] P. C. Fife and J. B. Macleod,Arch. Rat. Mech. Anal.,65, 335 (1977). · Zbl 0361.35035 · doi:10.1007/BF00250432
[33] M. Cage and R. S. Hamilton,J. Diff. Geom.,23, 69 (1986).
[34] A. T. Fomenko,Variational Problems in Topology [in Russian], Nauka, Moscow (1982). · Zbl 0526.58012
[35] G. A. Fusco, ”Geometric approach to the dynamics ofu t =\(\epsilon\) 2 u +f(u),” in:Lect. Notes in Phys., Vol. 359, Springer, Berlin-Heidelberg-New York (1990), p. 53–73.
[36] J. Carr and R. Pego, ”Very slow phase separation in one dimension,” in:Lect. Notes in Phys. (M. Raseleet al., eds.), Vol. 344, Springer (1989), p. 216. · Zbl 0991.35515 · doi:10.1007/BFb0024946
[37] J. Carr and R. Pego,Commun. Pure Appl. Math.,42, 523 (1989). · Zbl 0685.35054 · doi:10.1002/cpa.3160420502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.