zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
$\varepsilon$-optimality and duality for multiobjective fractional programming. (English) Zbl 0937.90097
Summary: Using the scalar $\varepsilon$-parametric approach, we establish the Karush-Kuhn-Tucker (which we call KKT) necessary and sufficient conditions for an $\varepsilon$-Pareto optimum of nondifferentiable multiobjective fractional objective functions subject to nondifferentiable convex inequality constraints, linear equality constraints, and abstract constraints. These optimality criteria are utilized as a basis for constructing one duality model with appropriate duality theorems. Subsequently, we employ scalar exact penalty function to transform the multiobjective fractional programming problem to an unconstrained problem. Under this case, we derive the KKT necessary and sufficient conditions without a constraint qualification for $\varepsilon$-Pareto optimality of multiobjective fractional programming.

MSC:
90C29Multi-objective programming; goal programming
90C32Fractional programming
WorldCat.org
Full Text: DOI
References:
[1] Hiriart-Urruty, J. -B.; Lemaréchal, C.: Convex analysis and minimization algorithms. (1993)
[2] Kutateladze, S. S.: Convex ${\epsilon}$-programming. Soviet. math. Dokl. 20, 391-393 (1979) · Zbl 0425.49027
[3] Liu, J. C.: {$\epsilon$}-duality theorem of nondifferentiable nonconvex multiobjective programming. J. optim. Theory appl. 69, 153-167 (1991) · Zbl 0724.90057
[4] Liu, J. C.: {$\epsilon$}-Pareto optimality for nondifferentiable multiobjective programming via penalty function. J. math. Anal. appl. 198, 248-261 (1996) · Zbl 0848.90107
[5] J.C. Liu and K. Yokoyama, {$\epsilon$}-optimality and duality for fractional programming (to appear). · Zbl 0951.90044
[6] Loridan, P.: Necessary conditions for ${\epsilon}$-optimalty. Math. prog. Study 19, 140-152 (1982) · Zbl 0494.90085
[7] Loridan, P.; Morgan, J.: Penalty functions in ${\epsilon}$-programming and ${\epsilon}$-minimax problems. Math. prog. 26, 213-231 (1983) · Zbl 0511.90086
[8] Loridan, P.: {$\epsilon$}-solution in vector minimization problems. J. optim. Theory appl. 43, 265-267 (1984) · Zbl 0517.90074
[9] Mangasarian, O. L.: Sufficiency of exact penalty minimization. SIAM J. Control optim. 23, 30-37 (1985) · Zbl 0559.90072
[10] Yokoyama, K.: {$\epsilon$}-optimality criteria for convex programming problems via exact penalty functions. Math. prog. 56, 233-243 (1992) · Zbl 0778.90054
[11] Yokoyama, K.: {$\epsilon$}-optimality criteria for vector minimization problems via exact penalty functions. J. math. Anal. appl. 187, 296-305 (1994) · Zbl 0816.90117
[12] Zangwill, W. I.: Nonlinear programming via penalty functions. Management sci. 13, 344-358 (1967) · Zbl 0171.18202
[13] Strodiot, J. J.; Nguyen, V. H.; Heukemes, N.: {$\epsilon$}-optimal solutions in nondifferentiable convex programming and some related questions. Math. prog. 25, 307-328 (1983) · Zbl 0495.90067
[14] Ekeland, I.: On the variational principle. J. math. Anal. appl. 47, 324-353 (1974) · Zbl 0286.49015
[15] Bertsekas, D. P.: Necessary and sufficient conditions for a penalty method to be exact. Math. prog. 9, 87-99 (1975) · Zbl 0325.90055
[16] Han, S. P.; Mangasarian, O. L.: Exact penalty functions in nonlinear programming. Math. prog. 17, 251-269 (1979) · Zbl 0424.90057
[17] Han, S. P.; Mangasarian, O. L.: A dual differentiable exact penalty function. Math. prog. 25, 293-306 (1983) · Zbl 0495.90070
[18] Ibaraki, T.: Parametric approaches to fractional programming. Math. prog. 26, 345-362 (1983) · Zbl 0506.90078