×

Modeling noisy time series: Physiological tremor. (English) Zbl 0937.92006

Summary: Empirical time series often contain observational noise. We investigate the effect of this noise on the estimated parameters of models fitted to the data. For data of physiological tremor, i.e. a small amplitude oscillation of the outstretched hand of healthy subjects, we compare the results for a linear model that explicitly includes additional observational noise to one that ignores this noise. We discuss problems and possible solutions for nonlinear deterministic as well as nonlinear stochastic processes. Especially we discuss the state space model applicable for modeling noisy stochastic systems and Bock’s algorithm capable for modeling noisy deterministic systems.

MSC:

92C30 Physiology (general)
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1142/S0218127494001325 · Zbl 0875.93030
[2] DOI: 10.1142/S0218127495000363 · Zbl 0886.58100
[3] Akaike H., Int. Symp. Information Theory, eds. Petrov, B. & Csaki, F. (Akademiai Kiado, Budapest) pp 267– (1973)
[4] DOI: 10.1103/PhysRevA.45.5524
[5] DOI: 10.1007/BF02460663 · Zbl 0757.92006
[6] DOI: 10.1007/BF01573843
[7] DOI: 10.1002/andp.19925040607
[8] DOI: 10.1103/PhysRevA.42.5817
[9] Brown R., Phys. Rev. 47 pp 3962– (1993)
[10] DOI: 10.2307/2290282
[11] Casdagli M., Physica 35 pp 335– (1989)
[12] Casdagli M., J. Roy. Stat. Soc. 54 pp 303– (1991)
[13] Cremers J., Z. Naturforsch. 42a pp 797– (1987)
[14] Crutchfield J., Complex Syst. 1 pp 417– (1987)
[15] DOI: 10.1103/PhysRevLett.73.1927
[16] Dempster A., J. Roy. Stat. Soc. 39 pp 1– (1977)
[17] DOI: 10.1097/00004691-199603000-00002
[18] DOI: 10.1080/10556789508805633
[19] DOI: 10.1007/BF00202385
[20] DOI: 10.1137/0105007 · Zbl 0083.35503
[21] DOI: 10.1007/BF00204112 · Zbl 0825.92057
[22] DOI: 10.1103/PhysRevA.44.3496
[23] DOI: 10.1103/PhysRevA.43.5321
[24] Gouesbet G., Physica 58 pp 202– (1992)
[25] DOI: 10.1038/jcbfm.1991.159
[26] Irving A., Physica 102 pp 15– (1997)
[27] DOI: 10.1063/1.166196
[28] DOI: 10.1142/S0218127493000507 · Zbl 0875.58025
[29] DOI: 10.1007/BF00699746 · Zbl 0785.34034
[30] DOI: 10.1115/1.3662552
[31] DOI: 10.1142/S021812749100021X · Zbl 0876.65097
[32] DOI: 10.1051/aas:1997104
[33] Kostelich E., Physica 58 pp 138– (1992)
[34] Kugiumtzis D., Physica 95 pp 13– (1996)
[35] DOI: 10.1080/01621459.1974.10482947
[36] DOI: 10.1109/5.58326
[37] DOI: 10.1142/S0218127492000598 · Zbl 0900.62497
[38] Randall J., J. Appl. Phys. 34 pp 390– (1973)
[39] DOI: 10.1016/0048-9697(92)90166-P
[40] DOI: 10.1016/0005-1098(78)90005-5 · Zbl 0418.93079
[41] DOI: 10.1214/aos/1176344136 · Zbl 0379.62005
[42] DOI: 10.1111/j.1467-9892.1982.tb00349.x · Zbl 0502.62085
[43] Sigeti D., Phys. Rev. 52 pp 2443– (1995)
[44] DOI: 10.1103/PhysRevA.35.2276
[45] DOI: 10.1111/j.1467-9892.1993.tb00162.x · Zbl 0780.62064
[46] Stiles R., J. Neurophys. 44 pp 40– (1980)
[47] DOI: 10.1038/344734a0
[48] DOI: 10.1007/BF00202568 · Zbl 0800.92116
[49] DOI: 10.1016/0924-980X(96)94658-5
[50] DOI: 10.1007/s004220050439 · Zbl 0908.92016
[51] DOI: 10.1007/s004220050440 · Zbl 0908.92017
[52] DOI: 10.1016/S0006-3495(98)77881-6
[53] DOI: 10.1021/ie00050a015
[54] DOI: 10.2307/2291003 · Zbl 0813.62037
[55] DOI: 10.1137/0903003 · Zbl 0481.65050
[56] Weigend A., Int. J. Neur. Comput. 1 pp 193– (1990)
[57] DOI: 10.1080/03091929408203676
[58] DOI: 10.1098/rsta.1927.0007 · JFM 53.0509.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.