Jaulent, Jean-François Global \(\ell\)-adique clean field theory. (Théorie \(\ell\)-adique globale du corps de classes.) (French) Zbl 0938.11052 J. Théor. Nombres Bordx. 10, No. 2, 355-397 (1998). The fundamental results of \(\ell\)-adic class field theory for number fields are presented here. The first section is devoted to the construction of the fundamental \(\mathbb{Z}_\ell\) module in the \(\ell\)-adic group of ideles. The fundamentals of \(\ell\)-adic class field theory are presented in the second section, while the third is devoted to the theory of \(\ell\)-adic duality. The following theorem of Section 2 helps to describe the general theory: Let \(K\) be a number field, then the reciprocity map induces a continuous isomorphism of the \(\ell\)-group \(J_K\) of ideles of \(K\) onto the Galois group \(G_K^{ab}= G(K^{ab}/K)\) of the maximal abelian \(\ell\)-extension \(K^{ab}\) of \(K\). The kernel of this mapping is the subgroup \(R_K\) of principal ideles. In this correspondence the decomposition subgroup \(D_\wp\) of a place \(\wp\) of \(K\) is the image of \(G_K^{ab}\) of the subgroup \(R_\wp\) of \(J_K\) and the inertia subgroup \(I_\wp\) is the image or the subgroup \(U_\wp\) of units of \(R_\wp\). Here \(R_\wp\) is the \(\ell\)-adic compactification of the multiplicative group \(K_\wp^*\) where \(K_\wp\) is the completion of \(K\) at a place \(\wp\) of \(K\). Reviewer: C.Parry (Blacksburg) Cited in 1 ReviewCited in 36 Documents MSC: 11R37 Class field theory 11R56 Adèle rings and groups 11S37 Langlands-Weil conjectures, nonabelian class field theory Keywords:\(\ell\)-adic class field theory; \(\ell\)-adic group of ideles; \(\ell\)-adic duality; reciprocity map; ideles PDFBibTeX XMLCite \textit{J.-F. Jaulent}, J. Théor. Nombres Bordx. 10, No. 2, 355--397 (1998; Zbl 0938.11052) Full Text: DOI Numdam EuDML EMIS References: [1] Artin, E., Tate, J., Class field theory, Benjamin, New York, 1967. · Zbl 0176.33504 [2] Bertrandias, F., Payan, J.-J., Γ-extensions et invariants cyclotomiques. Ann. Sci. Ec. Norm. Sup5 (1972), 517-548. · Zbl 0246.12005 [3] Federer, L.J., Gross, B.N., Regulators and Iwasawa modules. Inv. Math.62 (1981), 443-457. · Zbl 0468.12005 [4] Gillard, R., Formulations de la conjecture de Leopoldt et étude d’une condition suffisante. Abh. Math. Sem. Hamburg48 (1979), 125-138. · Zbl 0396.12008 [5] Gras, G., Jaulent, J.-F., Sur les corps de nombres réguliers. Math. Z.202 (1989), 343-365. · Zbl 0704.11040 [6] Gras, G., Plongements kummériens dans les Zp-extensions. Composito Math.55 (1985), 383-395. · Zbl 0584.12004 [7] Jaulent, J.-F., Nguyen Quang Do, T., Corps p-rationnels, corps p-réguliers et ramification restreinte. J. Théor. Nombres Bordeaux5 (1993), 343-363. · Zbl 0957.11046 [8] Jaulent, J.-F., L’arithmétique des l-extension (Thèse d’Etat), Pub. Math. Fac. Sci. Besançon Théor. Nombres 1985/86 (1986). · Zbl 0601.12002 [9] Jaulent, J.-F., Sur les conjectures de Leopoldt et de Gross. Journées arithmétiques de Besançon,Astérisque147-148 (1987), 107-120. · Zbl 0623.12003 [10] Jaulent, J.-F., Noyau universel et valeurs absolues Journées arithmétiques de Marseille-Luminy, Astérisque198-200 (1990), 187-209. · Zbl 0756.11033 [11] Jaulent, J.-F., La Théorie de Kummer et le K2 des corps de nombres. J. Théor. Nombres Bordeaux2 (1990), 377-411. · Zbl 0723.11051 [12] Jaulent, J.-F., Classes logarithmiques des corps de nombres. J. Théor. Nombres Bordeaux6 (1994), 301-325. · Zbl 0827.11064 [13] Jaulent, J.-F., Sauzet, O., Pro-l-extensions de corps de nombres Γ-rationnels. J. Numb. Th.65 (1997), 240-267. · Zbl 0896.11043 [14] Kolster, M., An idelic approach to the wild kernel. Invent. Math.103 (1991), 9-24. · Zbl 0724.11056 [15] Miki, H., On the Leopoldt conjecture on the p-adic regulators. J. Numb. Th.26 (1987), 117-128. · Zbl 0621.12009 [16] Miki, H., On the maximal abelian l-extension of a finite algebraic number field with given ramification. Nagoya Math. J.70 (1978), 183-202. · Zbl 0398.12003 [17] Movahhedi, A., Nguyen Quang Do, T., Sur l’arithmétique des corps de nombres p-rationnels. Sém. Th. Nombres Paris (1987/1988), Prog. in Math.89 (1990), 155-200. · Zbl 0703.11059 [18] Movahhedi, A., Sur les p-extensions des corps p-rationnels. Mat. Nachr.149 (1990), 163-176. · Zbl 0723.11054 [19] Nguyen Quang Do, T., Lois de réciprocité primitives. Manuscripta Math.72 (1991), 307-324. · Zbl 0747.11047 [20] Serre, J.-P., Cohomologie galoisienne. , Springer Verlag (1994). · Zbl 0812.12002 [21] Soriano, F., Classes logarithmiques ambiges des corps quadratiques. Acta Arith.78 (1997), 201-219. · Zbl 0869.11081 [22] Thomas, H., Premier étage d’une Zl-extension. Manuscripta Math.81 (1993), 413-435. · Zbl 0799.11047 [23] Thomas, H., Trivialité du 2-rang du noyau hilbertien. J. Théor. Nombres Bordeaux6 (1994), 459-483. · Zbl 0822.11079 [24] Tate, J., Les conjectures de Stark sur les fonctions L d’artin en s = 0. Prog. in Math.47, Birkhaüser, 1984. · Zbl 0545.12009 [25] Wingberg, K., On Galois groups of p-closed algebraic number fields with restricted ramification. J. reine angew. Math.400 (1989), 185-202. · Zbl 0715.11065 [26] Wingberg, K., On Galois groups of p-closed algebraic number fields with restricted ramification II. J. reine angew. Math.416 (1991), 187-194. · Zbl 0728.11058 [27] Yamagishi, M., A note on free pro-p-extensions of algebraic number fields. J. Théor. Nombres Bordeaux5 (1993), 165-178. · Zbl 0784.11052 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.