×

zbMATH — the first resource for mathematics

Solution of the Robin problem for the Laplace equation. (English) Zbl 0938.31005
Let \(G\subset \mathbb {R}^m\) (\(m>2\)) be an open set with compact boundary \(\partial G\neq \emptyset \). Let \(\lambda \) be a finite Borel measure supported by \(\partial G\) and suppose that the single layer potential \(U\lambda \) of the measure \(\lambda \) is continuous and bounded on \(\partial G\). Further let \(\mu \) be a finite signed Borel measure supported by \(\partial G\). A generalized Robin problem for the Laplace equation on \(G\) is formulated in the following way: Find a function \(u\in L^1(\lambda)\) on \(\operatorname {cl}G\) such that
(a) \(u\) is harmonic on \(G\),
(b) \(u\) is finely continuous in \(\lambda \)-a.a. points of \(\partial G\)
(c) \(|\nabla u|\) is integrable over all bounded open subsets of \(G\),
(d) \(N^Gu+u\lambda =\mu \), where \(N^Gu\) denotes the weak characterization of the normal derivative of \(u\).
The solution of that problem is represented by the single layer potential \(U\nu \) of a signed measure \(\nu \) on \(\partial G\). It is proved that if \(G\) has a smooth boundary or \(m=3\) and \(G\) has a piecewise-smooth boundary then there is a solution of that problem with given \(\mu \) if and only if \(\mu (\partial H)=0\) for all bounded components \(H\) of \(\operatorname {cl}G\) for which \(\lambda (\partial H)=0\).
Reviewer: M.Dont (Praha)

MSC:
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] J. F. Ahner: The exterior Robin problem for the Helmholtz equations. J. Math. Anal. Appl. 66 (1978), 37-54. · Zbl 0398.35019
[2] R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387-402. · Zbl 0697.31005
[3] M. Brelot: Éléments de la théorie classique du potentiel. Centre de documentation universitaire. Paris, 1961. · Zbl 0084.30903
[4] Yu. D. Burago, V. G. Maz’ ya: Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute. Leningrad, 1969.
[5] M. Chlebík: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences.Praha, 1988.
[6] H. Federer: Geometric Measure Theory. Springer-Verlag, 1969. · Zbl 0176.00801
[7] I. Gohberg, A. Markus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10 (76) (1960), 91-95.
[8] N. V. Grachev, V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19(4) (1986), 60-64. · Zbl 0639.31003
[9] N. V. Grachev, V. G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-06, Linköping Univ.,Sweden. · Zbl 1381.45039
[10] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-07, Linköping Univ., Sweden. · Zbl 1381.45016
[11] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. · Zbl 1273.35087
[12] H. Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975. · Zbl 0309.47001
[13] R. E. Kleinman, W. L. Wendland: On Neumann’ s method for the Helmholtz equation. J. Math. Anal. Appl. 57 (1977), 170-202. · Zbl 0351.35022
[14] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980.
[15] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. · Zbl 0149.07906
[16] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential heory. Aplikace matematiky 31 (1986), 239-308.
[17] N. L. Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966.
[18] J. Lukeš, J. Malý: Measure and Integral. Matfyzpress, 1995. · Zbl 0888.28001
[19] V. G. Maz’ya: Boundary integral equations . Sovremennyje problemy matematiki, fundamental’nyje napravlenija , 27. Viniti, Moskva, 1988.
[20] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslov. Math. J. 47 (1997), 651-679. · Zbl 0978.31003
[21] D. Medková: Solution of the Neumann problem for the Laplace equation. Czechoslov. Math. J. · Zbl 0949.31004
[22] I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205-211. · Zbl 0215.42602
[23] I. Netuka: Generalized Robin problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 312-324. · Zbl 0241.31008
[24] I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 462-489. · Zbl 0241.31009
[25] I. Netuka: The third boundary value problem in potential theory. Czechoslov. Math. J. 2(97) (1972), 554-580. · Zbl 0242.31007
[26] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374-383. · Zbl 0314.31006
[27] I. Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslov. Math. J. 25 (1975), 309-316. · Zbl 0309.31019
[28] J. Plemelj: Potentialtheoretische Untersuchungen. B. G. Teubner, Leipzig, 1911. · JFM 42.0828.10
[29] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 1-4, 135-177. · Zbl 0749.31003
[30] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109-115. · Zbl 0921.31004
[31] V. D. Sapožnikova: ARRAY(0x9e2e418). Izdat. Leningr. Univ., Leningrad, 1966, pp. 35-44.
[32] M. Schechter: Principles of Funtional Analysis. Academic Press, London, 1971.
[33] K. Yosida: Functional Analysis. Springer Verlag, 1965. · Zbl 0126.11504
[34] W. P. Ziemer: Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120. Springer-Verlag, 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.