Chemin, Jean-Yves Uniqueness theorems for the three dimensional Navier-Stokes system. (Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel.) (French) Zbl 0938.35125 J. Anal. Math. 77, 27-50 (1999). The author considers the following class of systems of Navier-Stokes type: \[ v_t-\nu\Delta v=Q(v,v) \text{ in }\mathbb{R}^d \times(0,T),\qquad v(0) =v_0\quad \text{ in }\mathbb{R}^d \] for \(d\geq 3\). The operator \(Q\) has the form \[ Q(v,v)= \sum_{j,k}A_{j,k} (D)(v^jv^k), \] where the \(A_{j,k}\) are Fourier multiplication operators that are homogeneous of degree 1. The main results of the paper are existence and uniqueness theorems for functions with values in Besov spaces. Reviewer: K.Deckelnick (Brighton) Cited in 2 ReviewsCited in 157 Documents MSC: 35Q30 Navier-Stokes equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000) Keywords:Navier-Stokes equations; Besov spaces; Cauchy problem; existence; uniqueness PDF BibTeX XML Cite \textit{J.-Y. Chemin}, J. Anal. Math. 77, 27--50 (1999; Zbl 0938.35125) Full Text: DOI OpenURL References: [1] J.-M. Bony,Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. école Norm. Sup. (4)14 (1981), 209–246. [2] L. Caffarelli, R. Kohn and L. Nirenberg,Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math.35 (1982), 771–831. · Zbl 0509.35067 [3] M. Cannonne,Ondelettes, paraproduits et Navier-Stokes, Diderot éditeur, Arts et Sciences, 1995. [4] M. Cannone, Y. Meyer et F. Planchon,Solutions autosimilaires des équations de Navier-Stokes, Séminaireéquations aux Dérivées Partielles de l’école Polytechnique, Exposé VIII, 1993–1994. [5] J.-Y. Chemin,Fluides parfaits incompressibles, Astérisque230 (1995), 3–177. · Zbl 0829.76003 [6] J.-Y. Chemin,About Navier-Stokes system, Prépublication du Laboratoire d’Analyse Numérique de l’Université Paris 6. [7] J.-Y. Chemin et N. Lerner,Flot de champs de vecteurs non-lipschitziens et équations de Navier-Stokes, J. Differential Equations121 (1995), 314–328. · Zbl 0878.35089 [8] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes,Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9)72 (1992), 247–286. · Zbl 0864.42009 [9] P. Constantin and C. Foias,Navier-Stokes Equations, University of Chicago Press, 1988. · Zbl 0687.35071 [10] H. Fujita and T. Kato,On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal.16 (1964), 269–315. · Zbl 0126.42301 [11] G. Furioli, P.-G. Lemarié-Rieusset et E. Terraneo,Unicité des solutions mild des équations de Navier-Stokes dans L3(R3)et d’autres espaces limites, Prépublication de l’Université Evry. · Zbl 0970.35101 [12] I. Gallagher,The tridimensional Navier-Stokes equations with almost bidimensional data: stability, uniqueness and life span, Internat. Math. Res. Notices18 (1997), 919–935. · Zbl 0893.35098 [13] D. Iftimie,La résolution du système quasi-géostrophique de Navier-Stokes sur les domaines minces et la limite quasi-géostrophique, Thèse de l’Université Paris 6. [14] T. Kato,Nonstationary flows of viscous and ideal fluids in R3, J. Funct. Anal.9 (1972), 296–305. · Zbl 0229.76018 [15] J. Leray,Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math.63 (1933), 193–248. · JFM 60.0726.05 [16] Y. Meyer,Ondelettes et opérateurs tome 3, Hermann, Paris, 1991. [17] R. Temam,Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984. · Zbl 0568.35002 [18] H. Triebel,Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. · Zbl 0387.46032 [19] W.von Wahl,The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspekt der Mathematik, Vieweg & Sohn, Wiesbaden, 1985 · Zbl 0575.35074 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.