×

zbMATH — the first resource for mathematics

Definitions of Sobolev classes on metric spaces. (English) Zbl 0938.46037
Let \((S,d,\mu)\) be a set \(S\) equipped with a metric \(d\) and a locally finite Borel measure \(\mu\) satisfying the doubling condition. There are several ways to introduce Sobolev spaces: Let \(1\leq p<\infty\). Then \(u\in M^1_p(S,d,\mu)\) if \(u\in L_p(S)\) and \[ |u(x)- u(y)|\leq d(x,y)(g(x)+ g(y))\quad\text{for some }0\leq g\in L_p(S). \] Or: \(u\in P^1_p(S,d,\mu)\) if for some \(0\leq g\in L_p(S)\) and some \(C>0\), \(\lambda\geq 1\), \[ \not\mkern-7mu\int^\infty_B|u- u_B|d\mu\leq Cr\Biggl(\not\mkern-7mu\int_{\lambda B} g^p d\mu\Biggr)^{1/p}, \] where \(B\) is a ball of radius \(r\), \(u_B\) is the average, and \(\not\mkern-7mu\int\) the average value of the integral (Poincaré inequality). The authors study the relations of these two possibilities. They apply their results to Sobolev spaces defined via vector fields of first-order differential operators.
Reviewer: H.Triebel (Jena)

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] C. DELLACHERIE, P.A. MEYER, Probabilities and potential, North-Holland Mathematics Studies, 29, North-Holland Publishing Co., 1978. · Zbl 0494.60001
[2] E.B. FABES, C.E. KENIG, R.P. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. · Zbl 0498.35042
[3] H. FEDERER, Geometric measure theory, Springer, 1969. · Zbl 0176.00801
[4] B. FRANCHI, C. GUTIÉRREZ, R.L. WHEEDEN, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. · Zbl 0822.46032
[5] B. FRANCHI, E. LANCONELLI, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 10 (1983), 523-541. · Zbl 0552.35032
[6] B. FRANCHI, G. LU, R.L. WHEEDEN, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Int. Mat. Res. Notices (1996), 1-14.
[7] B. FRANCHI, C. PÉREZ, R.L. WHEEDEN, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal., 153 (1998), 108-146. · Zbl 0892.43005
[8] B. FRANCHI, R. SERAPIONI, F. SERRA CASSANO, Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., (7) 11-B (1997), 83-117. · Zbl 0952.49010
[9] N. GAROFALO, D.M. NHIEU, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97. · Zbl 0906.46026
[10] N. GAROFALO, D.M. NHIEU, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144. · Zbl 0880.35032
[11] P. HAJIASZ, Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996), 403-415. · Zbl 0859.46022
[12] P. HAJIASZ, Geometric approach to Sobolev spaces and badly degenerated elliptic equations, The Proceedings of Banach Center Minisemester : Nonlinear Analysis and Applications, (N.Kenmochi, M. Niezgódka, P.Strzelecki, eds.) GAKUTO International Series; Mathematical Sciences and Applications, vol. 7 (1995), 141-168. · Zbl 0877.46024
[13] P. HAJIASZ, P. KOSKELA, Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 320 (1995), 1211-1215. · Zbl 0837.46024
[14] P. HAJIASZ, P. KOSKELA, Sobolev met Poincaré, Memoirs Amer. Math. Soc., to appear.
[15] J. HEINONEN, P. KOSKELA, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand., 77 (1995), 251-271. · Zbl 0860.30018
[16] J. HEINONEN, P. KOSKELA, Quasiconformal maps on metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61. · Zbl 0915.30018
[17] D. JERISON, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J., 53 (1986), 503-523. · Zbl 0614.35066
[18] T. KILPELÄINEN, Smooth approximation in weighted Sobolev spaces, Comment. Math. Univ. Carolinae, 38 (1997), 29-35. · Zbl 0886.46035
[19] P. KOSKELA, P. MACMANUS, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17. · Zbl 0918.30011
[20] G. LU, The sharp Poincaré inequality for free vector fields : an endpoint result, Rev. Mat. Iberoamericana, 10 (1994), 453-466. · Zbl 0860.35006
[21] A. NAGEL, E.M. STEIN and S. WAINGER, Balls and metrics defined by vector fields I : basic properties, Acta Math., 155 (1985), 103-147. · Zbl 0578.32044
[22] S. SEMMES, Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.), 2 (1996), 155-295. · Zbl 0870.54031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.