Shi, Zhan Windings of Brownian motion and random walks in the plane. (English) Zbl 0938.60073 Ann. Probab. 26, No. 1, 112-131 (1998). Let \(\{Z(t)= X(t)+ iY(t), t\geq 0\}\) be a planar Brownian motion starting at \(z_0\neq 0\), \(\theta(t)\) be the total angle wounded by \(Z(t)\) around origin up to time \(t\). The author considers the a.s. asymptotic behaviour of the so-called “big windings” \(\theta_+(t)= \int^t_0 I_{\{|Z(u)|> 1\}}d\theta(u)\) and “small windings” \(\theta_-(t)= \int^t_0 I_{\{|Z(u)|< 1\}}d\theta(u).\) Both \(\limsup\) and \(\liminf\) behaviour of \(\theta_+(t)\), \(\theta_-(t)\) and \(\eta(t)= a\theta_+(t)+ b\theta_-(t)\), \((a,b)\in R^2\), are investigated, the integral test for \(\eta(t)\) is proved as well as Chung-type law of the iterated logarithm. The method of proofs is based on skew-producted representation of \(Z(t)\) and accurate estimates of the Brownian winding clocks. The analogous problems for a spherically symmetric random walk \(S\) in \(R^2\) are also studied via the strong invariance principle. It is proved that windings of \(S\) behaves asymptotically as \(\theta_+(t)\). Thus \(\limsup\) and \(\liminf\) versions of LIL are obtained. Reviewer: N.M.Zinchenko (Kyïv) Cited in 6 Documents MSC: 60J65 Brownian motion 60G50 Sums of independent random variables; random walks 60F15 Strong limit theorems Keywords:planar Brownian motion; winding angle; law of the iterated logarithm; integral test; random walk; strong invariance principle PDF BibTeX XML Cite \textit{Z. Shi}, Ann. Probab. 26, No. 1, 112--131 (1998; Zbl 0938.60073) Full Text: DOI OpenURL References: [1] BELISLE, C. 1989. Windings of random walks. Ann. Probab. 17 1377 1402. \' · Zbl 0693.60020 [2] BELISLE, C. 1991. Windings of spherically symmetric random walks via Brownian embed\' ding. Statist. Probab. Lett. 12 345 349. · Zbl 0803.60062 [3] BELISLE, C. and FARAWAY, J. 1991. Winding angle and maximum winding angle of the ťwo-dimensional random walk. J. Appl. Probab. 28 717 726. JSTOR: · Zbl 0748.60057 [4] BERTOIN, J. and WERNER, W. 1994. Asymptotic windings of planar Brownian motion revisited via the Ornstein Uhlenbeck process. Seminaire de Probabilites XXVII. \' Ĺecture Notes in Math. 1583 138 152. Springer, Berlin. · Zbl 0814.60080 [5] BERTOIN, J. and WERNER, W. 1994. Comportement asymptotique du nombre de tours effectues par la trajectoire brownienne plane. Seminaire de Probabilites XXVIII. \' \' Ĺecture Notes in Math. 1583 164 171. Springer, Berlin. · Zbl 0810.60077 [6] BERTOIN, J. and WERNER, W. 1996. Stable windings. Ann. Probab. 24 1269 1279. · Zbl 0867.60045 [7] CHUNG, K. L. 1948. On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc. 64 205 233. JSTOR: · Zbl 0032.17102 [8] COMTET, A., DESBOIS, J. and MONTHUS, C. 1993. Asymptotic laws for the winding angles of planar Brownian motion. J. Statist. Phys. 73 433 440. · Zbl 1101.60343 [9] CSAKI, E. 1978. On the lower limits of maxima and minima of Wiener process and partial śums.Wahrsch. Verw. Gebiete 43 205 221. · Zbl 0372.60113 [10] CSAKI, E. 1980. On some distributions concerning maximum and minimum of a Wiener ṕrocess. Colloq. Math. Soc. Janos Bolyai 21 43 52. \' · Zbl 0417.60078 [11] CSORGO, M. and REVESZ, P. 1979. How big are the increments of a Wiener process? Ann. \" \' Ṕrobab. 7 731 737. · Zbl 0412.60038 [12] DURRETT, R. 1982. A new proof of Spitzer’s result on the winding of two-dimensional Brownian motion. Ann. Probab. 10 244 246. · Zbl 0479.60081 [13] DURRETT, R. 1984. Brownian Motion and Martingales in Analysis. Wadsworth, Belmont, CA. · Zbl 0554.60075 [14] FELLER, W. 1951. The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist. 22 427 432. · Zbl 0043.34201 [15] FELLER, W. 1970. An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York. [16] FRANCHI, J. 1995. Comportement asymptotique presque sur des nombres de tours effectues ṕar le mouvement brownien d’une variete riemannienne compacte de dimension 2 ou \' \' 3. Bull. Sci. Math. 119 119 128. · Zbl 0835.58039 [17] FRISTEDT, B. 1973. Sample functions of stochastic processes with stationary independent increments. Adv. in Probab. 3 241 396. · Zbl 0309.60047 [18] GRUET, J.-C. and MOUNTFORD, T. S. 1993. The rate of escape for pairs of windings on the Riemann sphere. Proc. London Math. Soc. 48 552 564. · Zbl 0803.60040 [19] GRUET, J.-C. and SHI,1995. Some asymptotic results for exponential functionals of Brownian motion. J. Appl. Probab. 32 930 940. JSTOR: · Zbl 0842.60025 [20] ITO, K. and MCKEAN, H. P. 1974. Diffusion Processes and Their Sample Paths. Springer, Berlin. · Zbl 0285.60063 [21] KOCHEN, S. and STONE, C. 1964. A note on the Borel Cantelli lemma. Illinois J. Math. 8 248 251. · Zbl 0139.35401 [22] LIN,Y. and LU, C. R. 1992. Strong Limit Theorems. Kluwer, Dordrecht. · Zbl 0753.60030 [23] LYONS, T. and MCKEAN, H. P. 1984. Windings of the plane Brownian motion. Adv. in Math. 51 212 225. · Zbl 0541.60075 [24] MESSULAM, P. and YOR, M. 1982. On D. Williams’ pinching method and some applications. J. London Math. Soc. 26 348 364. · Zbl 0518.60088 [25] PITMAN, J. W. and YOR, M. 1986. Asymptotic laws of planar Brownian motion. Ann. Probab. 14 733 779. · Zbl 0607.60070 [26] PITMAN, J. W. and YOR, M. 1989. Further asymptotic laws of planar Brownian motion. Ann. Probab. 17 965 1011. · Zbl 0686.60085 [27] REVESZ, P. 1990. Random Walk in Random and Non-Random Environment. World Scien\' ťific, Singapore. [28] ROGERS, L. C. G. and WILLIAMS, D. 1994. Diffusions, Markov Processes and Martingales 1. Foundations, 2nd ed. Wiley, Chichester. · Zbl 0826.60002 [29] ROGERS, L. C. G. and WILLIAMS, D. 1987. Diffusions, Markov Processes and Martingales 2. Ito Calculus. Wiley, Chichester. · Zbl 0977.60005 [30] SHI,1994. Liminf behaviours of the windings and Levy’s stochastic areas of planar \' Brownian motion. Seminaire de Probabilites XXVIII. Lecture Notes in Math. 1583 \' \' 122 137. Springer, Berlin. · Zbl 0810.60076 [31] SHORACK, G. R. and WELLNER, J. A. 1986. Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365 [32] SPITZER, F. 1958. Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 187 197. JSTOR: · Zbl 0089.13601 [33] WILLIAMS, D. 1974. A simple geometric proof of Spitzer’s winding number formula for 2-dimensional Brownian motion. Univ. College, Swansea, Wales. Unpublished manuscript. [34] YOR, M. 1992. Some Aspects of Brownian Motion. I. Some Special Functionals. Birkhauser, \" Basel. · Zbl 0779.60070 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.