×

zbMATH — the first resource for mathematics

Epsilon-inflation with contractive interval functions. (English) Zbl 0938.65058
The paper deals with both theoretical and practical results concerning epsilon-inflation technique which is used for a certain class of functions. The main result is based on Brouwer’s fixed point theorem. It gives sufficient conditions under which the inflation procedure stops after finitely many steps so that the inclusion property is satisfied. In this way zeros of various mathematical problems can be verified.

MSC:
65F05 Direct numerical methods for linear systems and matrix inversion
65G50 Roundoff error
65H10 Numerical computation of solutions to systems of equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] G. Alefeld: Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar Product. Computerarithmetic, E. Kaucher, U. Kulisch and Ch. Ullrich (eds.), Teubner, Stuttgart, 1987, pp. 9-30.
[2] G. Alefeld and J. Herzberger: Introduction to Interval Computations. Academic Press, New York, 1983. · Zbl 0552.65041
[3] G. Alefeld and H. Spreuer: Iterative improvement of componentwise error bounds for invariant subspaces belonging to a double or nearly double eigenvalue. Computing 36 (1986), 321-334. · Zbl 0582.65026
[4] O. Caprani and K. Madsen: Iterative methods for interval inclusion of fixed points. BIT 18 (1978), 42-51. · Zbl 0401.65035
[5] K. Grüner: Solving the Complex Algebraic Eigenvalue Problem with Verified High Accuracy. Accurate Numerical Algorithms, A Collection of Research Papers, Research Reports ESPRIT, Project 1072, DIAMOND, Vol. 1, Ch. Ullrich and J. Wolff von Gudenberg (eds.), Springer, Berlin, 1989, pp. 59-78. · Zbl 0675.65024
[6] S. König: On the Inflation Parameter Used in Self-Validating Methods. Contributions to Computer Arithmetic and Self-Validating Numerical Methods, Ch. Ullrich (ed.), Baltzer, IMACS, Basel, 1990, pp. 127-132. · Zbl 0784.65024
[7] G. Mayer: Result Verification for Eigenvectors and Eigenvalues. Topics in Validated Computations, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, pp. 209-276. · Zbl 0813.65077
[8] G. Mayer: Über ein Prinzip in der Verifikationsnumerik. Z. angew. Math. Mech. 75 (1995), S II, S 545-S 546.. · Zbl 0850.65104
[9] G. Mayer: Epsilon-inflation in verification algorithms. J. Comp. Appl. Math. 60 (1995), 147-169. · Zbl 0839.65059
[10] G. Mayer: On a unified representation of some interval analytic algorithms. Rostock. Math. Kolloq. 49 (1995), 75-88. · Zbl 0861.65049
[11] G. Mayer: Success in Epsilon-Inflation. Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie Verlag, Berlin, 1996, pp. 98-104. · Zbl 0848.65035
[12] A. Neumaier: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990. · Zbl 0715.65030
[13] S. M. Rump: Kleine Fehlerschranken bei Matrixproblemen. Thesis, Universität Karlsruhe, 1980. · Zbl 0437.65036
[14] S. M. Rump: Solving Algebraic Problems with High Accuracy. A New Approach to Scientific Computation, U. W. Kulisch and W. L. Miranker (eds.), Academic Press, New York, 1983, pp. 53-120. · Zbl 0597.65018
[15] S. M. Rump: New Results in Verified Inclusions. Accurate Scientific Computation, Lecture Notes in Computer Science Vol. 235, W. L. Miranker and R. A. Toupin (eds.), Springer, Berlin, 1986, pp. 31-69.
[16] S. M. Rump: On the solution of interval linear systems. Computing 47 (1992), 337-353. · Zbl 0753.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.