Przytycki, Feliks Hölder implies Collet-Eckmann. (English) Zbl 0939.37026 Flexor, Marguerite (ed.) et al., Géométrie complexe et systèmes dynamiques. Colloque en l’honneur d’Adrien Douady à l’occasion du soixantième anniversaire, Orsay, France, du 3 au 8 juillet 1995. Paris: Astérisque, Astérisque. 261, 385-403 (2000). Summary: The author proves that for every polynomial \(f\) if its basin of attraction to \(\infty\) is Hölder and the Julia set contains only one critical point \(c\) then \(f\) is Collet-Eckmann, namely there exists \(\lambda>1\), \(C>0\) such that, for every \(n\geq 0\), \(|(f^n)'(f(c))|\geq C\lambda^n\). He introduces also topological Collet-Eckmann rational maps and repellers.For the entire collection see [Zbl 0932.00046]. Cited in 1 ReviewCited in 3 Documents MSC: 37F50 Small divisors, rotation domains and linearization in holomorphic dynamics 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37L45 Hyperbolicity; Lyapunov functions for infinite-dimensional dissipative dynamical systems Keywords:Collet-Eckmann holomorphic maps; repellers; Hölder basin of attraction; non-uniformly hyperbolic; telescope; rational maps; iteration; Julia set PDF BibTeX XML Cite \textit{F. Przytycki}, in: Géométrie complexe et systèmes dynamiques. Colloque en l'honneur d'Adrien Douady à l'occasion du soixantième anniversaire, Orsay, France, du 3 au 8 juillet 1995. Paris: Astérisque. 385--403 (2000; Zbl 0939.37026)