×

Bilinear optimal control for a wave equation. (English) Zbl 0939.49016

The paper considers the optimal control problem \[ \int_Q [(w- w_d)^2+\alpha h^2] dx dt\to \min,\tag{1} \]
\[ w_{tt}=\Delta w+ hw+ f\quad\text{in }\Omega\times(0, T),\quad w=0\quad\text{on }\partial\Omega\times (0,T),\tag{2} \]
\[ w(0,x)= w_0(x),\quad w_t(0, x)= w_1(x), \] where \(\Omega\subset \mathbb{R}^n\) is a bounded domain and \(h\in U= \{h\in L_\infty(Q)\mid-M\leq h(x,t)\leq M\}\) is the control. The author shows the existence of an optimal control and that the mapping \(h\to w_h\) (\(w_h\) being the solution of (2) corresponding to a chosen \(h\in U\)) is Gâteaux differentiable in appropriate spaces. On this basis the necessary optimality conditions are derived and it is shown that for \(T>0\) small enough there exists only one solution of the optimality system, provided that the state and the solution of the conjugate equation are bounded in \(Q\).
Reviewer: U.Raitums (Riga)

MSC:

49K20 Optimality conditions for problems involving partial differential equations
35L05 Wave equation
Full Text: DOI

References:

[1] DOI: 10.1137/0320042 · Zbl 0485.93015 · doi:10.1137/0320042
[2] DOI: 10.1007/BF01442552 · Zbl 0405.93030 · doi:10.1007/BF01442552
[3] DOI: 10.1002/cpa.3160320405 · Zbl 0394.93041 · doi:10.1002/cpa.3160320405
[4] DOI: 10.1016/0167-6911(94)90023-X · Zbl 1055.49511 · doi:10.1016/0167-6911(94)90023-X
[5] DOI: 10.1002/sapm1973523189 · Zbl 0274.35041 · doi:10.1002/sapm1973523189
[6] DOI: 10.1137/0309004 · Zbl 0216.55501 · doi:10.1137/0309004
[7] DOI: 10.1137/0304024 · Zbl 0166.35805 · doi:10.1137/0304024
[8] Simon J., Pura Appl. pp 65– (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.