Fresse, Benôit Descent algebra and cogroups in algebras over an operad. (Algèbre des descentes et cogroupes dans les algèbres sur une opérade.) (French) Zbl 0940.18004 Bull. Soc. Math. Fr. 126, No. 3, 407-433 (1998). The author gives a new proof of his theorem that cogroups in algebras over an operad \(\mathcal{P}\) are free \(\mathcal{P}\)-algebras [B. Fresse, Comment. Math. Helv. 73, No. 4, 637-676 (1998; Zbl 0929.16033)]. By algebra is meant either a connected graded algebra or a complete algebra. The ground field has to be of characteristic \(0\). The proof relies on a universal action of Solomon’s descent algebra (for symmetric groups) [L. Solomon, J. Algebra 9, 220-239 (1968; Zbl 0186.04503)] on \(\mathcal{P}\)-algebras with cogroup structure. The action of the first Eulerian idempotent induces moreover an explicit set of free generators. In the special case of connected commutative Hopf algebras the same construction has been carried out by F. Patras [Ann. Inst. Fourier 43, No. 4, 1067-1087 (1993; Zbl 0795.16028)]. In the case of a connected differential graded \(\mathcal{P}\)-algebra with cogroup structure, the universal action is compatible with the differential. By duality, this implies that for a connected graded \(\mathcal{P}\)-coalgebra with group structure, the homology of its primitive part is naturally isomorphic to the primitive part of its homology. Reviewer: Clemens Berger (Nice) Cited in 5 Documents MSC: 18D50 Operads (MSC2010) 16W30 Hopf algebras (associative rings and algebras) (MSC2000) 16W50 Graded rings and modules (associative rings and algebras) 05E10 Combinatorial aspects of representation theory 18D35 Structured objects in a category (MSC2010) 20F29 Representations of groups as automorphism groups of algebraic systems Keywords:cogroup; Solomon’s descent algebra; operad Citations:Zbl 0929.16033; Zbl 0186.04503; Zbl 0795.16028 × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML Link References: [1] DRINFEL’D (V.G.) . - Quantum groups , in “Proceedings International Congress in Mathematics”, Berkeley, 1986 p. 798-820. MR 89f:17017 | Zbl 0667.16003 · Zbl 0667.16003 [2] FRESSE (B.) . - Cogroups in algebras over an operad are free algebras , Comment. Math. Helv., à paraître. Zbl 0929.16033 · Zbl 0929.16033 · doi:10.1007/s000140050072 [3] FRESSE (B.) . - Lie theory of formal groups over an operad , J. Algebra, t. 202, 1998 , p. 455-511. MR 99c:14063 | Zbl 01203868 · Zbl 1041.18009 · doi:10.1006/jabr.1997.7280 [4] GARSIA (A.M.) , REUTENAUER (C.) . - A decomposition of Solomon’s descent algebra , Adv. Math., t. 77, 1989 , p. 189-262. MR 91c:20007 | Zbl 0716.20006 · Zbl 0716.20006 · doi:10.1016/0001-8708(89)90020-0 [5] GETZLER (E.) , JONES (J.D.S.) . - Operads, homotopy algebra and iterated integrals for double loop spaces , prépublication, 1994 . [6] GERSTENHABER (M.) , SCHACK (S.D.) . - A Hodge-type decomposition for commutative algebra cohomology , J. Pure Appl. Algebra, t. 48, 1987 , p. 229-247. MR 88k:13011 | Zbl 0671.13007 · Zbl 0671.13007 · doi:10.1016/0022-4049(87)90112-5 [7] GERSTENHABER (M.) , SCHACK (S.D.) . - The shuffle bialgebra and the cohomology of commutative algebras , J. Pure Appl. Algebra, t. 70, 1991 , p. 263-272. MR 92e:13008 | Zbl 0728.13003 · Zbl 0728.13003 · doi:10.1016/0022-4049(91)90073-B [8] GINZBURG (V.) , KAPRANOV (M.M.) . - Koszul duality for operads , Duke Math. J., t. 76, 1995 , p. 203-272. Article | MR 96a:18004 | Zbl 0855.18006 · Zbl 0855.18006 · doi:10.1215/S0012-7094-94-07608-4 [9] LODAY (J.-L.) . - La renaissance des opérades , in “Séminaire Bourbaki, 1994 - 1995 ”, Astérisque, t. 237, 1996 , p. 47-74. Numdam | MR 98b:18010 | Zbl 0866.18007 · Zbl 0866.18007 [10] LODAY (J.-L.) . - Série de Hausdorff, idempotents Euleriens et algèbres de Hopf , Expo. Math., t. 12, 1994 , p. 165-178. MR 95a:20015 | Zbl 0807.17003 · Zbl 0807.17003 [11] LODAY (J.-L.) . - Opérations sur l’homologie cyclique des algèbres commutatives , Invent. Math., t. 96, 1989 , p. 205-230. MR 89m:18017 | Zbl 0686.18006 · Zbl 0686.18006 · doi:10.1007/BF01393976 [12] LODAY (J.-L.) . - Cyclic homology , Grundlehren der Math. Wissenschaften, Springer-Verlag, t. 301, 1992 . MR 94a:19004 | Zbl 0780.18009 · Zbl 0780.18009 [13] MAY (J.P.) . - The geometry of iterated loop spaces , Lecture Notes in Math., Springer-Verlag, t. 271, 1972 . MR 54 #8623b | Zbl 0244.55009 · Zbl 0244.55009 [14] MILNOR (J.W.) , MOORE (J.C.) . - On the structure of Hopf algebras , Ann. Math., t. 81, 1965 , p. 211-264. MR 30 #4259 | Zbl 0163.28202 · Zbl 0163.28202 · doi:10.2307/1970615 [15] OUDOM (J.-M.) . - Coproduct and cogroups in the category of graded dual Leibniz algebras , in “Operads : Proceedings of renaissance conferences, 1995 ”, Contemp. Math., t. 202, 1997 , p. 115-135. MR 98c:17003 | Zbl 0880.17002 · Zbl 0880.17002 [16] PATRAS (F.) . - L’algèbre des descentes d’une bigèbre graduée , J. Algebra, t. 170, 1994 , p. 547-566. MR 96a:16043 | Zbl 0819.16033 · Zbl 0819.16033 · doi:10.1006/jabr.1994.1352 [17] PATRAS (F.) . - La décomposition en poids des algèbres de Hopf , Ann. Inst. Fourier, t. 43, 1993 , p. 1067-1087. Numdam | MR 95d:16054 | Zbl 0795.16028 · Zbl 0795.16028 · doi:10.5802/aif.1365 [18] PATRAS (F.) . - Construction géométrique des idempotents eulériens. Filtration des groupes de polytopes et des groupes d’homologie de Hochschild , Bull. Soc. Math. Fr., t. 119, 1991 , p. 173-198. Numdam | MR 92i:19005 | Zbl 0752.55014 · Zbl 0752.55014 [19] QUILLEN (D.) . - Rational homotopy theory , Ann. of Math., t. 90, 1969 , p. 205-295. MR 41 #2678 | Zbl 0191.53702 · Zbl 0191.53702 · doi:10.2307/1970725 [20] REUTENAUER (C.) . - Free Lie Algebras , London Math. Soc. Mon., Clarendon Press, t. 7, 1993 . MR 94j:17002 | Zbl 0798.17001 · Zbl 0798.17001 [21] SOLOMON (L.) . - A decomposition of the group algebra of a finite Coxeter group , J. Algebra, t. 9, 1968 , p. 220-239. MR 38 #1191 | Zbl 0186.04503 · Zbl 0186.04503 · doi:10.1016/0021-8693(68)90022-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.