×

zbMATH — the first resource for mathematics

A homogeneity improvement approach to the obstacle problem. (English) Zbl 0940.35102
Theorem 1. Let \(K= \{k: \mathbb{R}^n\to \mathbb{R}\), \(k(x)= x\cdot Ax\), where \(x\in\mathbb{R}^n\) and \(A\) is nonnegative symmetric marix such that \(\text{tr }A= 1/4\}\), \(\text{ri}K= \{k\in K: k(x)> 0\) if \(x\in \mathbb{R}^n\setminus\{0\}\}\), \(P: H^{1,2}(S(0,1))\to K\) the projection onto \(K\) in \(H^{1,2}(S(0,1))\), \(H= \{x\mapsto{1\over 4}\max(x-\nu,0)^2: \nu\in\partial S(0,1))\}\) and \(M: H^{1,2}(S(0,1))\to \mathbb{R}\), \(M(v)= \int_{S(0,1)}(|\nabla v|^2+ \max(v, 0)) dx- 2\int_{\partial S(0,1)} v^2 dH^{n- 1}\), where \(H^{n- 1}\) is the \((n-1)\)-dimensional Hausdorff measure. Then there exist \(\kappa,\delta\in ]0,1[\) such that it holds for each nonnegative \(c\in H^{1,2}(S(0,1))\) that is homogeneous of degree 2: (1) if \(|c-h|_{1,2}\leq \delta\) for some \(h\in H\), then there exists \(v\in H^{1,2}(S(0,1))\) such that \(v= c\) on \(\partial S(0, 1)\) and \(M(v)\leq (1-\kappa)M(c)+ \kappa{1\over 16} \int_{S(0,1)} x^2_1 dx\), (2) if \(\text{dist}(c, K)\leq\delta\) and either \(P(c)\in \text{ri }K\) or \(P(c)\circ U(x)= {1\over 4} x^2_n\) for all \(x\in \mathbb{R}^n\) for some rotation \(U\), then there exists \(v\in H^{1,2}(S(0,1))\) such that \(v= c\) on \(\partial S(0,1)\) and \(M(v)\leq (1- \kappa)M(c)+ \kappa{1\over 8} \int_{S(0,1)} x^2_1 dx\).
Theorem 2. Let \(\Omega\) be a bounded open set of \(\mathbb{R}^n\) with Lipschitz boundary, \(n\geq 2\), \(x_0\in \Omega\) and \(\delta> 0\) such that \(S(x_0, \delta)\subset\Omega\), \(0\leq u_D\in H^{1,2}(\Omega)\), let \(u\in H^{1,2}(\Omega)\) be the point of minimum of \(E:\{v\in H^{1,2}(\Omega), v-u_D\in H^{1,2}_0(\Omega)\}\to \mathbb{R}\), \(E(v)= \int_\Omega(|\nabla v|^2+ \max(v,0)) dx\), \(\Phi_{x_0}: ]0,\delta[\to \mathbb{R}\), \(\Phi_{x_0}(r)= r^{-n-2} \int_{S(x_0, r)}(|\nabla u|^2+ \max(u,0)) dx- 2r^{-n- 3} \int_{\partial S(x_0, r)} u^2 dH^{n- 1}\), then \(\Phi_{x_0}(\sigma)- \Phi_{x_0}(\rho)= \int^\sigma_\rho r^{-n- 2} \int_{\partial S(x_0, r)}2(\nabla u\cdot \nu- 2u/r)^2 dH^{n-1} dr\geq 0\) if \(0< \rho<\sigma<\delta\). Moreover, let \(x_0\in \Omega\cap \partial\{x\in \Omega: u(x)>0\}\), suppose that the inequality of Theorem 1 holds with \(\kappa\in ]0,1[\) for each \(c_r\), where \(c_r(x)= {|x|^2\over r^2} u\left(x_0+ {r\over|x|} x\right)\) such that \(r\leq r_0< 1\) and let \(u_0\) denote an arbitrary blow-up limit of \(u\) at \(x_0\). Then \(|\Phi_{x_0}(r)- \Phi_{x_0}(0+)|\leq |\Phi_{x_0}(r_0)- \Phi_{x_0}(0+)|\left({r\over r_0}\right)^{{(n+ 2)\kappa\over 1-\kappa}}\) for \(r\in ]0, r_0[\), there exists \(C(n, \kappa)\) such that \[ \int_{\partial S(0,1)} \Biggl|{u(x_0+ rx)\over r^2}- u_0(x)\Biggr|dH^{n-1}\leq C(n, \kappa)|\Phi_{x_0}(r_0)- \Phi_{x_0}(0+) |^{1/2}\Biggl({r\over r_0}\Biggr)^{{(n+ 2)\kappa\over 2(1- \kappa)}} \] for \(r\in ]0,r_0/2[\) and \(u_0\) is the unique blow-up limit of \(u\) at \(x_0\). Furthermore, the author obtains the differentiability of the solution at singular free boundary points and that the set of regular free boundary points is locally a \(C^{1,\beta}\) surface.
Reviewer: G.Bottaro (Genova)

MSC:
35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
49J10 Existence theories for free problems in two or more independent variables
PDF BibTeX XML Cite
Full Text: DOI