zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximation of the Korteweg-de Vries equation by the nonlinear Schrödinger equation. (English) Zbl 0940.35179
In 1968, Zakharov derived the nonlinear Schrödinger equation as an approximation equation for the water wave problem. Naturally, one wonders if solutions of the water wave problem can actually be rigorously approximated by solutions of the nonlinear Schrödinger equation. This paper considers solutions of the Korteweg-de Vries equation, which describes water waves with small amplitude in a long and narrow canal. Let $\psi$ be the approximation wave constructed from a fixed $C([0, T], H^{s+5}(\bbfR, \bbfC))$-solution of the nonlinear Schrödinger equation, where $s\ge 3$ and $T>0$. Then, the following result is shown: There are $C$, $\varepsilon_0> 0$ such that for each $\varepsilon\in (0,\varepsilon_0)$, the Korteweg-de Vries equation has a solution $u$ satisfying $$\sup_{t\in [0, T/\varepsilon^2]}\|u- \psi\|_{H^s(\bbfR, \bbfR)}\le C\varepsilon^{3/2}.$$

35Q53KdV-like (Korteweg-de Vries) equations
35Q55NLS-like (nonlinear Schrödinger) equations
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI
[1] Ablowitz, M.; Segur, H.: Solitons and the inverse scattering transform. SIAM studies appl. Math. (1981) · Zbl 0472.35002
[2] Boussinesq, M. J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’académie des sciences inst. France (Séries 2) 23, 1-680 (1877)
[3] Collet, P.; Eckmann, J. -P.: The time dependent amplitude equation for the Swift--Hohenberg problem. Comm. math. Phys. 132, 139-153 (1990) · Zbl 0756.35096
[4] Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg--de Vries scaling limits. Commun. partial differential equations 10, 787-1003 (1985) · Zbl 0577.76030
[5] Craig, W.; Sulem, C.; Sulem, P. L.: Nonlinear modulation of gravity waves: A region approach. Nonlinearity 5, 497-522 (1992) · Zbl 0742.76012
[6] Hasimoto, H.; Ono, H.: Nonlinear modulation of gravitational waves. J. phys. Soc. Japan 33, 805-811 (1972)
[7] Kalyakin, L. A.: Long wave asymptotics, integrable equations as asymptotic limits of non-linear systems. Russian math. Surveys 44, 3-42 (1989) · Zbl 0683.35082
[8] Kato, T.: Quasi-linear equations of evolution with applications to partial differential equations. Lecture notes in math. 448 (1974)
[9] Katznelson, Y.: An introduction to harmonic analysis. (1976) · Zbl 0352.43001
[10] Kirrmann, P.; Schneider, G.; Mielke, A.: The validity of modulation equations for extended systems with cubic nonlinearities. Proc. royal soc. Edinburgh sect. A 122, 85-91 (1992) · Zbl 0786.35122
[11] Korteweg, D. J.; De Vries, G.: On the change of form of long waves advancing in the rectangular canal and a new type of long stationary waves. Phil. magaz. 39, 422-443 (1895) · Zbl 26.0881.02
[12] Newell, A.; Whitehead, J.: Finite bandwidth, finite amplitude convection. J. fluid mech. 38, 279-303 (1969) · Zbl 0187.25102
[13] Schneider, G.: Error estimates for the Ginzburg--Landau approximation. J. appl. Math. physics (ZAM) 45, 433-457 (1994) · Zbl 0805.35125
[14] Schneider, G.: Validity and limitation of the Newell--Whitehead equation. Math. nachr. 176, 263-349 (1995) · Zbl 0844.35120
[15] Van Harten, A.: On the validity of Ginzburg--Landau’s equation. J. nonlinear sci. 1, 397-422 (1991) · Zbl 0795.35112
[16] Zakharov, V. E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Soviet phys. J. appl. Mech. tech. Phys. 4, 190-194 (1968)
[17] Zakharov, V. E.; Kuznetsov, E. A.: Multi-scale expansions in the theory of systems integrable by the inverse scattering transform. Phys. D 18, 455-463 (1986) · Zbl 0611.35079