×

Approximation of the Korteweg-de Vries equation by the nonlinear Schrödinger equation. (English) Zbl 0940.35179

In 1968, Zakharov derived the nonlinear Schrödinger equation as an approximation equation for the water wave problem. Naturally, one wonders if solutions of the water wave problem can actually be rigorously approximated by solutions of the nonlinear Schrödinger equation. This paper considers solutions of the Korteweg-de Vries equation, which describes water waves with small amplitude in a long and narrow canal. Let \(\psi\) be the approximation wave constructed from a fixed \(C([0, T], H^{s+5}(\mathbb{R}, \mathbb{C}))\)-solution of the nonlinear Schrödinger equation, where \(s\geq 3\) and \(T>0\). Then, the following result is shown: There are \(C\), \(\varepsilon_0> 0\) such that for each \(\varepsilon\in (0,\varepsilon_0)\), the Korteweg-de Vries equation has a solution \(u\) satisfying \[ \sup_{t\in [0, T/\varepsilon^2]}\|u- \psi\|_{H^s(\mathbb{R}, \mathbb{R})}\leq C\varepsilon^{3/2}. \]

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M.; Segur, H., Solitons and the inverse scattering transform, SIAM Studies Appl. Math. (1981) · Zbl 0472.35002
[2] Boussinesq, M. J., Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l’Académie des Sciences Inst. France (Séries 2), 23, 1-680 (1877) · JFM 09.0680.04
[3] Collet, P.; Eckmann, J.-P., The time dependent amplitude equation for the Swift-Hohenberg problem, Comm. Math. Phys., 132, 139-153 (1990) · Zbl 0756.35096
[4] Craig, W., An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Commun. Partial Differential Equations, 10, 787-1003 (1985) · Zbl 0577.76030
[5] Craig, W.; Sulem, C.; Sulem, P. L., Nonlinear modulation of gravity waves: A region approach, Nonlinearity, 5, 497-522 (1992) · Zbl 0742.76012
[6] Hasimoto, H.; Ono, H., Nonlinear modulation of gravitational waves, J. Phys. Soc. Japan, 33, 805-811 (1972)
[7] Kalyakin, L. A., Long wave asymptotics, integrable equations as asymptotic limits of non-linear systems, Russian Math. Surveys, 44, 3-42 (1989) · Zbl 0683.35082
[8] Kato, T., Quasi-linear Equations of Evolution with Applications to Partial Differential Equations. Quasi-linear Equations of Evolution with Applications to Partial Differential Equations, Lecture Notes in Math., 448 (1974), Springer-Verlag: Springer-Verlag Berlin/New York, p. 25-70
[9] Katznelson, Y., An Introduction to harmonic Analysis (1976), Dover: Dover New York · Zbl 0169.17902
[10] Kirrmann, P.; Schneider, G.; Mielke, A., The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Royal Soc. Edinburgh Sect. A, 122, 85-91 (1992) · Zbl 0786.35122
[11] Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in the rectangular canal and a new type of long stationary waves, Phil. Magaz., 39, 422-443 (1895) · JFM 26.0881.02
[12] Newell, A.; Whitehead, J., Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38, 279-303 (1969) · Zbl 0187.25102
[13] Schneider, G., Error estimates for the Ginzburg-Landau approximation, J. Appl. Math. Physics (ZAM), 45, 433-457 (1994) · Zbl 0805.35125
[14] Schneider, G., Validity and limitation of the Newell-Whitehead equation, Math. Nachr., 176, 263-349 (1995) · Zbl 0844.35120
[15] van Harten, A., On the validity of Ginzburg-Landau’s equation, J. Nonlinear Sci., 1, 397-422 (1991) · Zbl 0795.35112
[16] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, Soviet Phys. J. Appl. Mech. Tech. Phys., 4, 190-194 (1968)
[17] Zakharov, V. E.; Kuznetsov, E. A., Multi-scale expansions in the theory of systems integrable by the inverse scattering transform, Phys. D, 18, 455-463 (1986) · Zbl 0611.35079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.