Buldygin, V. V.; Shurenkova, A. V. On a criterion of the compactness in the space \(L_p. \). (English. Ukrainian original) Zbl 0940.46014 Theory Probab. Math. Stat. 52, 33-37 (1996); translation from Teor. Jmovirn. Mat. Stat. 52, 32-36 (1995). Let \(E \subset L_p(D)\), \(1<p<\infty.\) The analogue of the Kolmogorov theorem of relative compactness of \(E\) in \(L_p(D)\) is proved. A wide class of averaging kernels is considered. Reviewer: A.Ya.Olenko (Kyïv) Cited in 1 Document MSC: 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46B50 Compactness in Banach (or normed) spaces Keywords:relative compactness; averaging kernel; Kolmogorov theorem PDFBibTeX XMLCite \textit{V. V. Buldygin} and \textit{A. V. Shurenkova}, Teor. Ĭmovirn. Mat. Stat. 52, 32--36 (1995; Zbl 0940.46014); translation from Teor. Jmovirn. Mat. Stat. 52, 32--36 (1995)