×

Coupling and ergodic theorems for Fleming-Viot processes. (English) Zbl 0940.60045

Summary: Fleming-Viot processes are probability-measure-valued diffusion processes that can be used as stochastic models in population genetics. Here we use duality methods to prove ergodic theorems for Fleming-Viot processes, including those with recombination. Coupling methods are also used to establish ergodicity of Fleming-Viot processes, first without and then with selection. A special type of selection known as symmetric overdominance is treated by other methods.

MSC:

60F99 Limit theorems in probability theory
60J60 Diffusion processes
60G57 Random measures
92D10 Genetics and epigenetics
60G10 Stationary stochastic processes
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] ATHREYA, K. and NEY, P. E. 1978. A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 493 501. · Zbl 0397.60053
[2] ATHREYA, K., MCDONALD, D. and NEY, P. E. 1978. Coupling and the renewal theorem. Amer. Math. Monthly 85 809 814. JSTOR: · Zbl 0397.60072
[3] DAWSON, D. 1978. Geostochastic calculus. Canad. J. Statist. 6 143 168. JSTOR: · Zbl 0399.60047
[4] DAWSON, D. A. and HOCHBERG, K. J. 1982. Wandering random measures in the Fleming Viot model. Ann. Probab. 10 554 580. \' · Zbl 0492.60045
[5] DOEBLIN, W. 1940. Elements d’une theorie generale des chaines simple constantes de Markoff. \' \' \' \' Ánn. Sci. Ecole Norm. Sup. 3 57 61 111. Z. · JFM 66.0617.01
[6] DYNKIN, E. B. 1978. Sufficient statistics and extreme points. Ann. Probab. 6 705 730. · Zbl 0403.62009
[7] ETHIER, S. N. 1992. Eigenstructure of the infinitely-many-neutral-alleles diffusion model. J. Appl. Probab. 29 487 498. JSTOR: · Zbl 0756.92017
[8] ETHIER, S. N. and GRIFFITHS, R. C. 1990. The neutral two-locus model as a measure-valued diffusion. Adv. in Appl. Probab. 22 773 786. JSTOR: · Zbl 0718.92009
[9] ETHIER, S. N. and GRIFFITHS, R. C. 1993. The transition function of a Fleming Viot process. Ann. Probab. 21 1571 1590. · Zbl 0778.60038
[10] ETHIER, S. N. and KURTZ, T. G. 1981. On the infinitely-many-neutral-alleles diffusion model. Adv. in Appl. Probab. 13 429 452. JSTOR: · Zbl 0483.60076
[11] ETHIER, S. N. and KURTZ, T. G. 1986. Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[12] ETHIER, S. N. and KURTZ, T. G. 1987. The infinitely-many-alleles model with selection as a measure-valued diffusion. Stochastic Models in Biology. Lecture Notes in Biomath. 70 72 86. Springer, Berlin. · Zbl 0644.92011
[13] ETHIER, S. N. and KURTZ, T. G. 1993. Fleming Viot processes in population genetics. SIAM J. Control Optim. 31 345 386. · Zbl 0774.60045
[14] ETHIER, S. N. and KURTZ, T. G. 1994. Convergence to Fleming Viot processes in the weak atomic topology. Stochastic Process. Appl. 54 1 27. · Zbl 0817.60029
[15] FUKUSHIMA, M. and STROOCK, D. W. 1986. Reversibility of solutions to martingale problems. In Probability, Statistical Mechanics, and Number Theory. Advances in MathematicsSupplementary Studies G.-C. Rota, ed. 9 107 123. Academic Press, Orlando, FL. Z. · Zbl 0613.60066
[16] GRIFFEATH, D. 1976. Partial coupling and loss of memory for Markov chains. Ann. Probab. 4 850 858. · Zbl 0347.60048
[17] GRIFFEATH, D. 1978. Coupling methods for Markov processes. In Studies in Probability and Ergodic Theory 1 43. Academic Press, New York. · Zbl 0442.60033
[18] GRIFFITHS, R. C. 1979. A transition density expansion for a multi-allele diffusion model. Adv. in Appl. Probab. 11 310 325. JSTOR: · Zbl 0405.60079
[19] KINGMAN, J. F. C. 1975. Random discrete distributions. J. Roy. Statist. Soc. Ser. B 37 1 22. JSTOR: · Zbl 0331.62019
[20] LIGGETT, T. M. 1985. Interacting Particle Systems. Springer, Berlin. · Zbl 0559.60078
[21] LINDVALL, T. 1983. On coupling diffusion processes. J. Appl. Probab. 20 82 93. JSTOR: · Zbl 0511.60072
[22] LINDVALL, T. and ROGERS, L. C. G. 1986. Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 860 872. · Zbl 0593.60076
[23] NUMMELIN, E. 1978. A splitting technique for Harris recurrent Markov chains.Wahrsch. Verw. Gebiete 43 309 318. Z. · Zbl 0364.60104
[24] NUMMELIN, E. 1984. General Irreducible Markov Chains and Non-negative Operators. Cambridge Univ. Press. · Zbl 0551.60066
[25] SHIGA, T. 1981. Diffusion processes in population genetics. J. Math. Kyoto Univ. 21 133 151. · Zbl 0455.92005
[26] SHIGA, T. 1982. Wandering phenomena in infinite-allelic diffusion models. Adv. in Appl. Probab. 14 457 483. JSTOR: · Zbl 0489.60085
[27] SHIGA, T. 1990. A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes. J. Math. Kyoto Univ. 30 245 279. · Zbl 0751.60044
[28] VASERSHTEIN, L. N. 1969. Markov processes over denumerable products of spaces describing large systems of automata. Probablemy Peredachi Informatsii 5 64 73.
[29] WATTERSON, G. A. 1977. Heterosis or neutrality? Genetics 85 789 814.
[30] SALT LAKE CITY, UTAH 84112 MADISON, WISCONSIN 53706 E-MAIL: ethier@math.utah.edu E-MAIL: kurtz@math.wisc.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.